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A topological space X is said to have the fixed point property if the
equation

f(x) = x, x ∈ X
has a solution for every self-map f of X. Familiar examples are:

a) If X is the n-dimensional disk Dn in the Euclidean space Rn, then X
has the fixed point property.

b) If X is the product Sn×Sn of two n-spheres, n ≥ 1, then X does not
have the fixed point property.

A manifold is called a twisted product of two n-spheres Sn if it is simply
connected (i.e. π1 = 0), and its cohomology agrees with H∗(Sn × Sn).
Clearly, such manifolds are natural generalizations of the product Sn × Sn,
n ≥ 2. Let S(n) denote the set of all such manifolds . In this talk we

1) Give a homotopy classification of the set S(n) of manifolds;
2) Determine the set L(M) = {L(f) ∈ Z, f : M → M} of all possible

Lefchetz numbers L(f) for any M ∈ S(n);
3) Find all manifolds M ∈ S(n) for which 0 /∈ L(M).

In contrast to b), the manifolds obtained in 3) are generalizations of
Sn × Sn that enjoys the fixed point property.
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