On the twisted products of spheres that have the fixed point property

Haibao Duan¹

¹ Yau Mathematical Science Center, Tsinghua University, Beijing 100084
² Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190

Topological Invariants in Fixed Point Theory and Dynamical Systems Gdańsk University of Technology, January 29–31, 2024

A topological space X is said to have the fixed point property if the equation

$$f(x) = x, \, x \in X$$

has a solution for every self-map f of X. Familiar examples are:

a) If X is the *n*-dimensional disk D^n in the Euclidean space \mathbb{R}^n , then X has the fixed point property.

b) If X is the product $S^n \times S^n$ of two *n*-spheres, $n \ge 1$, then X does not have the fixed point property.

A manifold is called a *twisted product* of two *n*-spheres S^n if it is simply connected (i.e. $\pi_1 = 0$), and its cohomology agrees with $H^*(S^n \times S^n)$. Clearly, such manifolds are natural generalizations of the product $S^n \times S^n$, $n \geq 2$. Let S(n) denote the set of all such manifolds. In this talk we

1) Give a homotopy classification of the set S(n) of manifolds;

2) Determine the set $L(M) = \{L(f) \in \mathbb{Z}, f : M \to M\}$ of all possible Lefchetz numbers L(f) for any $M \in S(n)$;

3) Find all manifolds $M \in S(n)$ for which $0 \notin L(M)$.

In contrast to b), the manifolds obtained in 3) are generalizations of $S^n \times S^n$ that enjoys the fixed point property.