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Abstract. Bitmap images of arbitrary dimension may be formally per-
ceived as unions of m-dimensional boxes aligned with respect to a rect-
angular grid in Rm. Cohomology and homology groups are well known
topological invariants of such sets. Cohomological operations, such as
the cup product, provide higher-order algebraic topological invariants,
especially important for digital images of dimension higher than 3. If
such an operation is determined at the level of simplicial chains [see e.g.
González-Dı́az, Real, Homology, Homotopy Appl, 2003, 83–93], then it
is effectively computable. However, decomposing a cubical complex into
a simplicial one deleteriously affects the efficiency of such an approach.
In order to avoid this overhead, a direct cubical approach was applied in
[Pilarczyk, Real, Adv. Comput. Math., 2015, 253–275] for the cup prod-
uct in cohomology, and implemented in the ChainCon software package
[http://www.pawelpilarczyk.com/chaincon/].

We establish a formula for the Steenrod square operations [see Steenrod,
Annals of Mathematics. Second Series, 1947, 290–320] directly at the
level of cubical chains, and we prove the correctness of this formula.
An implementation of this formula is programmed in C++ within the
ChainCon software framework. We provide a few examples and discuss
the effectiveness of this approach.

One specific application follows from the fact that Steenrod squares yield
tests for the topological extension problem: Can a given map A→ Sd to
a sphere Sd be extended to a given super-complex X of A? In particular,
the ROB-SAT problem, which is to decide for a given function f : X →
Rm and a value r > 0 whether every g : X → Rm with ‖g− f‖∞ ≤ r has
a root, reduces to the extension problem.
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1 Introduction

Binary images (or bitmaps) appear in various contexts, not only image process-
ing. One can perceive a 2-dimensional bitmap image as a finite collection of
squares (black pixels) aligned with respect to a fixed grid in R2, and indexed
in both directions by the integers. A generalization to Rm may be called an
m-dimensional binary image. For example, a 3-dimensional binary image corre-
sponds to a collection of voxels that represent a 3-dimensional object embedded
in R3. This definition of an m-dimensional bitmap does not limit the area of
applications to image processing alone. For example, a rectangular lattice in Rm
is often used for numerical simulations of PDEs or simply for approximating
bounded sets in Rm, e.g., an outer bound for a set of solutions to some equation.

Cohomology and homology groups are well known topological invariants that
can be used to describe or classify the rough shape defined by an m-dimensional
bitmap. There exist theory and software that allow one to efficiently compute
these invariants. For example, the monograph [11] and the CHomP [2] and CAPD
[3] software projects contain algorithms aimed specifically at efficient homology
computation of m-dimensional bitmaps described in terms of full cubical sets
and cubical complexes (see Section 2 for precise definitions of these terms).

Cohomological operations, such as the cup product, provide higher-order al-
gebraic topological invariants than (co)homology groups alone. This is especially
important for bitmaps of dimension higher than 3, where the natural human in-
tuition may easily fail. One way to compute the operations effectively is to use
an approach to homology computation known as “effective homology” [20, 21].
In this approach, instead of reducing the topological information to a minimal
linear system that describes the degree of connectivity of the objects, one com-
putes an algebraic skeleton, further called an algebraic-topological model (or an
AT model for short), for representing these objects. In particular, an AT model
contains homomorphisms that allow to instantly obtain representative cycles for
each homology generator, and to efficiently compute, for an arbitrary cycle, the
combination of the corresponding homology generators. We refer to [9] for an ex-
planation of the philosophy behind this approach, and to [17] for an application
in the context of cubical sets.

Steenrod squares [23] are cohomology operations which, roughly speaking,
enhance the cohomology ring structure and thus help discriminating between
topologically different spaces which still might have isomorphic cohomology
rings. Steenrod squares, as well as any cohomology operations, are by defini-
tion natural : They are compatible with the induced homomorphisms, and thus
can discriminate between non-homotopic maps. Moreover, due to the naturality,
Steenrod squares can provide tests and sometimes even complete characteriza-
tion for problems in homotopy theory. The primary example of such and also an
important motivation for our work is the topological extension problem (for maps
into a sphere): Can a given map A→ Sd to a sphere Sd be extended to a given
super-complex X of A? Here the Steenrod squares yield stronger test than the
one obtained by plain cohomology and this test is complete if dimX ≤ d+ 2. In
fact, this has been the original motivation for Steenrod to introduce his squares,



which has been a major breakthrough in homotopy theory of the end of the first
half of the twentieth century.

We are interested in the extension problem mainly because another compu-
tational problem – called robust satisfiability – reduces to it [5]. In that problem,
given a continuous function f : X → Rn and a value r > 0, one has to decide
whether every g : X → Rn with ‖g− f‖∞ ≤ r has a root. In plain words, we ask
for solvability of the system of equations f(x) = 0 under uncertainty about the
function f quantified by the value of r. Robust satisfiability and the topological
extension problem are essentially computationally equivalent [5]. In particular,
theoretical complexity study of the extension problem [1] shows that robust sat-
isfiability is decidable in polynomial time when dimX ≤ 2n − 3 or n = 1, 2,
and undecidable when dimX ≥ 2n − 2 and n is odd. (In the remaining cases
of n even and arbitrary dimension of X, the problem is decidable [25].) More
practical point of view and an actual implementation is presented in [15] where
the Steenrod squares are used in the context of cubical complexes.

Determining cohomological operations at the level of cochains allows one to
use an AT model to compute them effectively. The idea is to take the cocycles
corresponding to cohomology generators, apply the operation to them, and to
determine the combination of the cohomology generators that defines the coho-
mology class represented by the resulting cocycle; see [8] for an in-depth descrip-
tion of this approach. In particular, the simplicial formula provided implicitly
in the first Steenrod’s paper on the topic [23] (see also [7] for an alternative
approach), computes the Steenrod squares at the level of representing simplicial
cocycles. This yields an effective method for computing the Steenrod squares on
the level of cohomology of simplicial complexes, if combined with the computa-
tion of an AT model. Unfortunately, decomposing a cubical set into a simplicial
complex deleteriously affects the efficiency of such an approach. A direct cubical
approach was proposed in [17] for the cup product in cohomology (see also [12]),
and was implemented in the ChainCon software package [16].

The purpose of our paper is to establish a formula for the Steenrod square
operations directly at the level of cubical chains. We emphasize the fact that
our result is not based upon the formula provided by Real [19] for the case of
simplicial sets; rather, we develop a direct cubical formula, following Steenrod’s
original approach [23]; the correctness of this formula follows from the axiomatic
approach to Steenrod squares, as explained at the beginning of Section 3. An im-
plementation of this formula is programmed in C++ and put within the Chain-
Con software framework [16], and serves the purpose of proof-of-concept and
benchmarking.

2 Topological Preliminaries

Cubical Complexes. An (abstract) cubical complex X is a family of sets X =
(X0, X1, . . .) equipped with face operators

∂si : Xn → Xn−1 for each i ∈ {1, . . . , n} and s ∈ {+,−}



satisfying the relation

∂si ∂
t
j = ∂tj∂

s
i+1 for i ≥ j and s, t ∈ {+,−} . (1)

The elements of each Xn are called n-cubes and the face operators ∂±i can be
thought of as an abstract counterpart of obtaining a facet of the cube [−1, 1]n

by fixing the ith coordinate to ±1, that is,

∂±i [−1, 1]n = [−1, 1]i−1 × {±1} × [−1, 1]n−i .

The simplest example is indeed the cubical complex Im where each set of n-cubes
Imn consists of all n-faces of the geometric cube [−1, 1]m and the face operators
are defined in the obvious sense. An important example will be cubical complexes
derived from cubical sets as explained below.

A cubical map f : X → Y from a cubical complex X to a cubical complex Y
is a family of maps fn : Xn → Yn that commute with all the face operators.

Cubical Sets. We follow the terminology and notation based upon [11, 14].
Let m be a positive integer. An elementary cube is the cartesian product of

m intervals of length 1 (the non-degenerate case) or 0 (the degenerate case) with
integer coordinates; formally:

[a1, b1]× · · · × [am, bm] ,

where ai, bi ∈ Z, and either bi = ai + 1, or ai = bi (and then [ai, bi] denotes the
singleton {ai}). If all the intervals in this product are non-degenerate then the
elementary cube is called a full cube.

A set A ⊂ Rm is called a cubical set if it is a finite union of elementary cubes;
Note that cubical sets are obviously compact ENRs. The cubical set A is called a
full cubical set if it is a finite union of full cubes. For example, an m-dimensional
binary image (or a bitmap) can be perceived as a full cubical set in Rm for the
purpose of topological analysis.

Since the face of an elementary cube is also an elementary cube, sets of
elementary cubes yield a natural cubical complex structure. The homological
properties of this cubical complex agree with the (singular) homology of the
corresponding cubical set.

Cubical Chain Complexes. To each cubical complex X and an Abelian group
G we assign a cubical chain complex

. . .
d3→ C2(X;G)

d2→ C1(X;G)
d1→ C0(X;G) ,

where each Cn(X;G) is the group of formal sums
∑
σ∈Xn

gσ ·σ with coefficients
in G and each boundary operator dn is the homomorphism defined by

dn(g · σ) =

n∑
i=1

(−1)i(g · ∂+i σ − g · ∂
−
i σ) .



AT Models. Let us recall the notion of an AT model, which helps us to compute
Steenrod squares effectively at the cohomology level using the formula defined
at the level of cochains.

A chain map between two chain complexes is a homomorphism that com-
mutes with the boundary operator. A chain contraction from a chain complex
C∗ to another chain complex C ′∗ is a triple (π, ι, φ) of chain maps π : C∗ → C ′∗
(projection), ι : C ′∗ → C∗ (inclusion) and φ : C∗ → C∗+1 (chain homotopy) that
satisfy the following conditions: (a) IdC − ιπ = ∂φ + φ∂; (b) πι = IdC′ ; (c)
πφ = 0; (d) φι = 0; (e) φφ = 0. See e.g. [4, §12] for the motivation of this def-
inition, and [8, p. 86] for comments on the terminology and applications. Note
that the existence of a chain contraction from C∗ to C ′∗ implies the fact that the
homology and cohomology modules of both chain complexes are isomorphic.

An algebraic topological model (introduced in [6]), or an AT model for short,
of a cubical complex K, is a chain contraction from C∗(K) to some free chain
complex M∗ with null differential. Note that M∗ is isomorphic to the homology
module of K. In particular, an AT model of K exists if H∗(K) has no torsion.
In what follows, we work with coefficients in Z2, so this condition is satisfied.

We use an AT model for representing the homology of K in the following way.
The image of each element of M∗ by the inclusion ι is a cycle that represents the
corresponding homology class. Additionally, the image of each cycle in C∗(K) by
the projection map π is the homology class that contains the cycle. In this way,
the homomorphisms ι and π are used to go back and forth between homology
generators and the corresponding cycles in C∗(K).

3 The Cubical Formulas for the Steenrod Operations

We follow the general scheme of many standard textbooks and sources addressing
Steenrod operations such as [10, 24], but the particular notation is very close to
[18]. The (non-algorithmic) construction there is based on the existence of chain
maps Dk

∗ : C∗(X;Z2) →
(
C∗(X;Z2) ⊗ C∗(X;Z2)

)
∗+k for k = 0, 1, . . . satisfying

the following: D0
∗ is a diagonal approximation1 and, all the chain maps Dk

∗ satisfy
the relation

Dk
∗ − TDk

∗ = (d⊗ d)Dk+1
∗ +Dk+1

∗ d , (2)

where T : C∗(X;Z2) ⊗ C∗(X;Z2) → C∗(X;Z2) ⊗ C∗(X;Z2) is defined as fol-
lows: T (σ ⊗ τ) = τ ⊗ σ. Each chain map Dk

∗ is called the kth higher diagonal
approximation.

Definition 1 ([18, pp. 186,187]). The Steenrod square Sqj : Hn(X;Z2) →
Hn+j(X;Z2) is induced by the composition

Zn(X;Z2)
∆ // Zn(X;Z2)⊗ Zn(X;Z2)

(Dn−j
n+j )

∗

// Zn+j(X;Z2) ,

1 A diagonal approximation for X is any chain map C∗(X;G)→ C∗(X;G)⊗C∗(X;G)
which induces the map ∆∗ : H∗(X;G) → H∗(X × X;G) where ∆ : X → X × X is
the diagonal map x 7→ (x, x). In the case of cubical chain complexes, the explicit
formula was given by Serre [22].



where ∆(z) := z ⊗ z is the diagonal map.

Our goal here is to give formulas for the chain maps Dk
∗ in the special case

when X is a cubical complex – see Definition 2 and Theorem 3 below.
There is a subtle difference between our definition above and the definition

provided in [18]: The chain maps Dk
∗ are defined in [18] for chain complexes with

integral coefficients. Indeed, their existence can be proved in this stronger sense;
however, for the definition of the Steenrod operations alone the “modulo 2”
version is only relevant. The proof of [18, Theorem 3.60] gives a chain homotopy
between any two choices of higher diagonal approximations (no matter whether
over Z or Z2). Thus the higher diagonal approximations over Z2 necessarily lead
to the identical cohomology operations – Steenrod squares.

Definition 2. For given integers n, k ≥ 0, let us define the set

Fkn := {(A,B) | A,B ⊆ [n], A ∩B = ∅ and |A|+ |B| = n− k} .

Let X be a cubical complex. We define the homomorphisms Dk
n : Cn(X;Z2)→(

C∗(X;Z2)⊗ C∗(X;Z2)
)
n+k

of degree k by the formula

Dk
n(σ) :=

∑
(A,B)∈Fk

n

∂−∗A σ ⊗ ∂∗Bσ ,

where for A = {a1 < a2 < . . . < ap} and B = {b1 < b2 < . . . < bq} we define

∂−∗A = ∂
−s(a1)
a1 . . . ∂

−s(ap)
ap and ∂∗B = ∂

s(b1)
b1

. . . ∂
s(bq)
bq

where

s(x) = (−1)|[x]\(A∪B)| .

Theorem 3. The homomorphisms Dk
n defined above satisfy relation (2).

Proof. Over Z2, relation (2) is equivalent to

Dk
n + TDk

n +Dk+1
n−1dn = (d⊗ d)n+k+1D

k+1
n . (3)

The right-hand side of (3) evaluates on a given generator 1 · σ ∈ Cn(X;Z2)
as follows (we will denote 1 · σ simply by σ):∑

(A,B)∈Fk+1
n

( ∑
i∈[n−|A|]
s∈{+,−}

∂si ∂
−∗
A σ ⊗ ∂∗Bσ +

∑
i∈[n−|B|]
s∈{+,−}

∂−∗A σ ⊗ ∂si ∂∗Bσ
)

=
∑

(A,B)∈Fk+1
n

( ∑
j∈[n]\A
s∈{+,−}

∂−∗,sA,j σ ⊗ ∂
∗
Bσ +

∑
j∈[n]\B
s∈{+,−}

∂−∗A σ ⊗ ∂∗,sB,jσ
)
,

where the operator ∂∗,sB,j is equal to ∂∗B with ∂sj inserted at the correct position

(that is, ∂∗,sB,j = ∂
s(b1)
b1 . . . ∂

s(br)
br

∂sj∂
s(br+1)
br+1

. . . ∂
s(bq)
bq

for br < j < br+1 and s(x) =

(−1)|[x]\(A∪B)|) and similarly for ∂−∗,sA,j . This equality follows by applying relation
(1). Each term of the sum above can be rewritten into one of the following forms
according to whether the face operator ∂±j is present on both sides of the tensor
product:



1. When the face operator ∂±j is present on both sides of the tensor product,
each term can be rewritten in one of the two types according to whether the
signs of the operators ∂±j on the left and on the right agree or not, explicitly

∂−∗A′ ∂
t
jσ ⊗ ∂∗B′∂−tj σ and ∂−∗A′ ∂

t
jσ ⊗ ∂∗B′∂tjσ

for unique (A′, B′) ∈ Fk+1
n−1 and t ∈ {+,−} determined by A,B, j and s. It is

not difficult to see that for any fixed A′, B′, t and j, the term of the first type
appears either twice (when t = s(j)) or never (when t 6= s(j)). In the second
type, the term appears exactly once (either ∂−∗A′ ∂

t
j = ∂∗A or ∂∗B′∂

t
j = ∂∗B for

some A and B).
2. When the face operator ∂±j is present on one side of the tensor product only,

we set up the following labeling:
– ∂−∗,sA,j σ ⊗ ∂∗Bσ will be called an (A ∪ {j}, B, j,−)-term when s = s(j) =

(−1)|[j]\(A∪B)|.
– ∂−∗,sA,j σ ⊗ ∂∗Bσ will be called an (A ∪ {j}, B, j,+)-term when s = −s(j).
– ∂−∗A σ ⊗ ∂∗,sB,jσ will be called an (A,B ∪ {j}, j,+)-term when s = s(j).

– ∂−∗A σ ⊗ ∂∗,sB,jσ will be called an (A,B ∪ {j}, j,−)-term when s = −s(j).
It follows that for each (A′, B′) ∈ Fkn , each j ∈ A′ ∪ B′, and each sign
t ∈ {+,−}, there is exactly one (A′, B′, j, t)-term in the sum above. We define
the following pairing on the set of all such (A′, B′, j, t)-terms: We pair each
(A′, B′, j,+)-term with the (A′, B′, j′,−)-term for j′ = min

(
(A ∪ B) \ [j]

)
when the minimum exists.2 Note that the paired terms are equal.
The unpaired
– (A′, B′, j,+)-terms for j = max(A′ ∪B′) and
– (A′, B′, j,−)-terms for j = min(A′ ∪B′)

are equal to
– ∂−∗A′ σ ⊗ ∂∗B′σ and
– ∂∗A′σ ⊗ ∂

−∗
B′ σ,

respectively.

Summing up what has been said above, the right-hand side of (3) equals to∑
(A′,B′)∈Fk

n

∂−∗A′ σ ⊗ ∂
∗
B′σ + ∂∗A′σ ⊗ ∂−∗B′ σ +

∑
(A′,B′)∈Fk+1

n−1

∑
j∈[n]

t∈{+,−}

∂−∗A′ ∂
t
jσ ⊗ ∂∗B′∂tjσ ,

which is exactly the left-hand side of (3). ut

Corollary 4. Definition 2 yields an explicit cubical formula for the Steenrod
squares as follows:

〈Sqj(zn), σ〉 :=
∑

A,B⊆[n+j]
A∩B=∅
|A|=|B|=j

〈zn, ∂−∗A σ〉〈zn, ∂∗Bσ〉 . (4)

2 Or, equivalently, we pair each (A′, B′, j,−)-term with the (A′, B′, j′,+)-term for
j′ = max

(
(A ∪B) ∩ [j]

)
when the maximum exists



4 The Algorithm, Software, and Examples

Algorithm for Computing Steenrod Squares. In order to compute all the
nontrivial Steenrod squares in a cubical complex K, we first compute an AT
model of K, using the algorithm provided in [17]. The AT model consists of
a finitely generated free chain complex M∗ with null differential, and a chain
contraction (π, ι, φ) from C∗(K) to M∗. In particular, M∗ is represented by a
finite collection M∗ of its generators. In this algorithm, for a chain z ∈ Cn(K),
its dual cochain is denoted as zn.

Algorithm 5.
Input:

(M∗, π, ι, φ) – an AT model of K;
Output:
P = {(zp, jp, σp) : p = 1, . . . , P} for some P ∈ Z, where zp ∈Mnp ,

np ∈ Z, jp ∈ Z, σp ∈Mjp+np , and the elements of P represent

all the nontrivial Steenrod squares in K, that is, 〈Sqjp(z
np
p ), σp〉 = 1;

Code:
P := ∅;
d := the dimension of M∗;
for each n ∈ {0, . . . , d}

for each j ∈ {0, . . . ,max(n, d− n)}
for each generator z ∈Mn

for each generator σ ∈Mn+j

α(z, j, σ) := 0;
for each A,B ⊆ [n+ j], A ∩B = ∅, |A| = |B| = j

for each s in ι(σ)
if z appears in π(∂−∗A s) and in π(∂∗Bs) then

α(z, j, σ) := α(z, j, σ) + 1;
if α(z, j, σ) 6= 0 then

P := P ∪ {(z, j, σ)};
return P.

Software Implementation. The software publicly available at [16] under the
GNU General Public License is written in the C++ programming language using
the technique of generic programming. In particular, the type of cells in a cellu-
lar complex is a template parameter, so the same software applies to simplicial
and cubical complexes alike, provided that the cell-specific operations (like the
boundary) have been defined. In addition to a programming library that is acces-
sible from within a program written in C++ and is the most efficient way of using
this software, there are a few command-line programs provided that read defi-
nitions of cellular complexes saved in human-readable text files, and output the
results in text format to the console. These programs thus constitute an easy to
use interface to the main features of the software. Simplicial and cubical cells are
defined, and several algorithms are implemented, including the computation of
an AT model, the cohomology ring, and the Steenrod squares. The main program



written especially for this paper is called ssqcub, and computes the Steenrod
squares of a cubical complex. Additional programs that may be used for com-
parison and for gathering additional information, are: ssqsim (computation of
Steenrod squares for simplicial complexes), ssqcubs (computation of Steenrod
squares for cubical complexes using simplicial subdivision), cringcub (computa-
tion of the cohomology ring for cubical complexes), and cringsim (computation
of the cohomology ring for simplicial complexes). We refer to the website [16]
and instructions provided there for further information.

Approximations of Sample Manifolds. Given a finite set X ⊂ Rn that
roughly approximates a bounded set M ⊂ Rn whose homological information
we would like to demonstrate, we approximate it by means of a full cubical
set A as follows. For each point x = (x1, . . . , xn) ∈ X, we take the point a =
(a1, . . . , an) ∈ Zn, where ai := bxic is the largest integer that does not exceed
xi, and is effectively computed by truncating the coordinates of x down to the
nearest integers. Then we take the union of all the full cubes whose minimal
vertices are given in this way. More precisely:

A :=
⋃{[

bx1c, bx1c+ 1
]
× · · · ×

[
bxnc, bxnc+ 1

]
: x ∈ X

}
.

In order to reduce a full cubical set A to a cubical set A′ ⊂ A which has the
same homological properties, we apply the reduction techniques introduced in
[14], which include removal of full cubes at the boundary of the set, and then a
sequence of free face collapses. The examples of full cubical sets and (general)
cubical sets discussed in this section are available at [16], and were obtained
as described above, with the application of the reductions. In particular, the
inclusion A′ → A induces an isomorphism in (co)homology.

The parametrization given by (α, β) 7→ (R cosα+r cosα cos α2 cosβ,R sinα+
r sinα cos α2 cosβ, r sin α

2 cosβ, r sinβ), with R = 4, r = 2, and α, β ∈ [0, 2π], was
used for the Klein bottle embedded in R4, and the parametrizations provided in
[13] were used for RP2 embedded in R5 and for CP2 embedded in R8 (the third
coordinate in both original formulas was dropped).

Table 1. A list of sample cubical sets that approximate selected manifolds with non-
trivial Steenrod squares.

Name embedding Number of Number of
of the example dimension full cubes elementary cubes

K2 – Klein bottle 4 111 406
RP2 – real projective plane 5 38 288
CP2 – complex projective plane 8 281 16,915

Sample Computation of the Steenrod Squares. We consider three repre-
sentative examples which exhibit nontrivial Steenrod squares, in addition to the



obvious Sq0 ∼= id. A summary of these examples is gathered in Table 1. The co-
homology over Z2 (in terms of Betti numbers) and the nontrivial cup products,
as well as the nontrivial Steenrod squares are listed in Table 2.

Table 2. The nontrivial cup products and the nontrivial Steenrod squares. Cohomology
generators are denoted by consecutive alphabetic letters for each dimension (e.g., a for
dimension 0, e for dimension 4) with appended indices starting from 1 within each
dimension separately.

Example Betti Nontrivial Nontrivial
numbers cup products Steenrod squares

K2 (1, 2, 1) b1 ^ b1 = c1, b1 ^ b2 = c1 Sq1(b1) = c1
RP2 (1, 1, 1) b1 ^ b1 = c1 Sq1(b1) = c1
CP2 (1, 0, 1, 0, 1) c1 ^ c1 = e1 Sq2(c1) = e1

Using Simplicial Subdivision. In the previous approach for the computation
of the Steenrod squares of digital images [7, 8], one would have to first compute a
simplicial subdivision of a cubical set, and then compute the simplicial Steenrod
squares, e.g., using the efficient formulas provided in [7]. This approach is con-
siderably less efficient than using the direct cubical formula, especially in higher
dimensions, where it takes a considerable number of simplices to fill a full cube.
For example, our approximation of Klein bottle consisting of 111 full cubes of
dimension 4 (see Table 1) yields a simplicial complex with 27,404 simplices, as
opposed to the cubical complex containing 5,724 cubical cells. The 38 full cubes
of dimension 5 that approximate RP2 yield 76,475 simplicial cells and 7,113
cubical cells, respectively. Obviously, the high numbers of simplicial cells detri-
mentally affect the computation speed (which is not linear!), and the memory
usage as well.

Computation for the Suspension. For each of the sample cubical sets, we
construct a cubical counterpart of its suspension, as follows. Given a cubical
set A ⊂ Rm, let B be a contractible cubical set in Rm such that A ⊂ B. For
example, if [mi,Mi] is the range of the i-th coordinate of all the points in A
then the cartesian product Πm

i=1[mi,Mi] is a cubical set that contains A and is
obviously contractible. Then we take

Sc(A) := (A× [0, 1]) ∪ (B × {0, 1}) .

It is immediate to see that Sc(A) is homotopically equivalent to the suspension
of A, defined as

S(A) := (A× [0, 1])/{(x1, 0) ∼ (x2, 0) and (x1, 1) ∼ (x2, 1) for all x1, x2 ∈ A} .

As expected, computations show that the nontrivial Steenrod squares remain
in the suspension, although are shifted by one dimension (see Table 3), but the



nontrivial cup products disappear in the suspension (and are thus not shown in
the table).

Table 3. Nontrivial Steenrod squares for suspensions. Cohomology generators are de-
noted by consecutive alphabetic letters for each dimension (e.g., a for dimension 0, e for
dimension 4) with appended indices starting from 1 within each dimension separately.

Example Betti Nontrivial
numbers Steenrod squares

Sc(K2) (1, 0, 2, 1) Sq1(c1) = d1
Sc(RP2) (1, 0, 1, 1) Sq1(c1) = d1
Sc(CP2) (1, 0, 0, 1, 0, 1) Sq2(d1) = f1

Time Complexity. Provided that an AT model of a chain complex has been
already computed, computing all the Steenrod squares involves the computation
of the inclusion map on selected homology generators, applying the formulas for
the Steenrod squares at the level of chains, and checking if specific homology
generators appear in the projections of faces that appear in the formula. Let
s denote the number of cells in the chain complex, let g be the number of
homology generators. An upper bound for the number of how many times (4) is
applied is at most O(g2). Assume the dimension is fixed, and then (4) evaluates
in constant time times the cost of checking the projections, which is at most
O(g). Since the chains are not longer than O(s), the overall pessimistic time
complexity of the computation of all the Steenrod squares is O(g3s2). Note
that the time complexity of computing an AT model is O(s3), and in typical
applications the numbers of homology generators are very small; therefore, the
cost of computing Steenrod squares is neglibigle if computation of complete
homological information of a cubical complex is taken into consideration.
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