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Abstract. We use rigorous numerical techniques to compute a lower bound for the exponent of
expansivity outside a neighborhood of the critical point for thousands of intervals of parameter
values in the quadratic family. We first compute a radius of the critical neighborhood outside
which the map is uniformly expanding. This radius is taken as small as possible, yet large enough
for our numerical procedure to succeed in proving that the expansivity exponent outside this
neighborhood is positive. Then, for each of the intervals, we compute a lower bound for this
expansivity exponent, valid for all the parameters in that interval. We illustrate and study the
distribution of the radii and the expansivity exponents. The results of our computations are
mathematically rigorous. The source code of the software and the results of the computations
are made publicly available at http://www.pawelpilarczyk.com/quadratic/.
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We report on some rigorous numerical results concerning expansivity exponents for various
parameter intervals for the dynamics outside a critical neighborhood in the quadratic family
of maps. For completeness and in order to motivate our study, we start in Section 1 with
some general facts on the quadratic family. The reader who is already familiar with the basic
background may wish to skip directly to Section 2.

1. Background and basic definitions

Let I be a compact interval and f : I → I a map. It is well known that the dynamics generated
by the iterates of f can range from very simple to extremely complex. Two basic examples are
the maps on the unit interval I = [0, 1] given by f(x) = x/10, for which the dynamics is very
“regular” since all initial conditions converge under iteration to the fixed point at the origin,
and g(x) = 10x mod 1, which instead has an infinite number of distinct periodic orbits, an
infinite number of dense orbits, and other hallmarks of what is generally described as “chaotic”
or “stochastic” dynamics. It turns out (in a way that can be formalized) that these two quite
distinct kinds of dynamical behavior are essentially due to the fact that in the first example the
map is contracting, i.e., the derivative is everywhere smaller than 1, and therefore nearby points
get closer under iteration, while in the second example the map is expanding, i.e., the derivative
is everywhere greater than 1, and therefore nearby points are moving away under iteration.

Things get much more complicated in examples which combine some regions of contraction
with some regions of expansion. One of the best known and most studied such examples is the
real quadratic family of maps

fa(x) = a− x2.
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The fixed points of fa are given by solutions of the equation a − x2 = x which gives x =
−1/2 ±

√
1 + 4a/2. Thus fa has two fixed points for every a > −1/4. For a > 0 these lie on

opposite sides of the origin and letting pa = −1/2−
√

1 + 4a/2 denote the negative fixed point,
and letting Ia = [pa,−pa] denote the compact interval defined by this fixed point, it is then easy
to see that for every a ∈ (0, 2] the map

fa : Ia → Ia

is well defined, i.e., fa maps the compact interval Ia to itself. The derivative of fa is f ′a(x) = −2x
and therefore it is easy to check that for positive values of a the derivative at the fixed point
pa satisfies |f ′a(pa)| > 1 whereas f ′a(0) = 0. Thus the map is neither fully contracting nor
fully expanding. Nevertheless, it is easy to check that for small values of the parameter a
the fixed point qa = −1/2 +

√
1 + 4a/2, which lies in the interior of the interval Ia, satisfies

|f ′a(qa)| < 1 and is indeed an attractor for every point in the interior of Ia. As a increases,
however, the fixed point qa loses its stability, the proportion of the interval Ia in which the map
is expanding increases, and generally the dynamics gets significantly more complicated. Basic
numerical simulations obtained by iterating a more or less arbitrary initial condition give rise
to the well known bifurcation diagram, see Figure 1, which was first observed in the 1970’s and
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Figure 1. Bifurcation diagram for the quadratic family.

generally credited to Feigenbaum. The diagram suggests certain regions of parameters for which
the dynamics is basically still regular, with most initial conditions eventually attracted to some
periodic orbit, interspersed by regions of parameter space in which the dynamics is very wild and
chaotic. Rigorous analytical results over the last couple of decades have gone a very long way in
explaining and clarifying this bifurcation diagram, and revealed some initially unexpected and
surprising facts. We restrict ourselves here to the parameter interval

Ω = [1.4, 2]

since this is the region in which the bifurcation diagram exhibits interesting phenomena. A first
and remarkable observation which was already made as far back as the 1940’s by Ulam and von
Neumann [30] is that the parameter 2 can be thought of as “stochastic” in a precise mathe-
matical sense (more formally, the corresponding map fa admits an ergodic invariant probability
measure which is absolutely continuous with respect to Lebesgue measure). In 1981, Jakobson
[6] and then in 1985 Benedicks and Carleson [2], showed that the set Ω+ ⊂ Ω of such stochastic
parameters is actually “large” in the sense that it has positive Lebesgue measure (see also some
generalizations in [24, 28, 23, 20, 27, 12, 13]). Interestingly, however, it is also “small” in the
sense that it is topologically nowhere dense, a fact that follows from the remarkable result that
the set Ω− ⊂ Ω of “regular” parameters (for which almost every initial condition is eventually
attracted to a periodic orbit) is open and dense in Ω [4, 15, 16] (see also generalizations in
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[10, 11]). Thus both regular and stochastic parameters have positive probability in Ω. It was
proved in [17] that in fact the union Ω+ ∪Ω− ⊂ Ω has full measure in Ω and these are therefore
the only two dynamical phenomena that occur with positive probability, even though there are
infinitely many parameters for which different, and sometimes extremely bizarre, dynamics does
occur.

On a more quantitative level, some attention has been devoted to the natural question of
how the measure is shared between the regular and stochastic parameters. Interestingly there
seems to be no heuristic argument of any kind suggesting either that most parameters should be
regular or that most parameters should be stochastic. Recent rigorous numerical estimates in
[29] confirm previous calculations in [25] and show that for the related family fa(x) = ax(1−x)
and the corresponding relevant parameter interval [2, 4] the set of regular parameters occupies at
least 10% of all parameters. While the calculations have not been carried out for the quadratic
family in the form that we consider here, it can be expected that they would yield similar results.
Parameters in Ω+ cannot be computed directly since they belong to a Cantor set (which makes
them theoretically undecidable, see [1]), but it is possible to obtain explicit bounds for the
measure of Ω+. Jakobson first set out the theoretical framework and posed the question of the
possibility of obtaining explicit estimates in [7, 8]. In [14] it was shown that |Ω+| ≥ 10−5000 and
improvements on these estimates have been recently announced by Yu-Ru in her unpublished
Phd thesis [5] in which she shows that |Ω+| ≥ 10−21 and by Shishikura [26] who gives a sketch of
an argument and non-rigorous calculations which suggest a bound of the order of |Ω+| ≥ 10−5

(we mention, however, that neither of these two works are currently published or, as far as we
know, even in a final preprint form, which gives an indication of the significant complexity and
difficulty of such computer-assisted arguments). Some work in progress by the authors of the
current paper aims to extend these estimates significantly.

One of the key conditions used in all proofs of the positivity of the Lebesgue measure of the set
Ω+ of stochastic parameters is the so-called uniform expansivity outside the critical neighborhood
which will be defined precisely in the next section. This property holds under certain general
abstract conditions, but for the quantitative results mentioned above, which include numerical
bounds on the measure of Ω+, it is necessary to have very explicit numerical estimates for the
expansivity and the size of the critical neighborhood outside of which the expansivity holds.
These numerical estimates are stated quite clearly, and in a very similar form to that given
here, in [14] where the calculations are essentially based on the ”real” arguments pioneered
by Benedicks and Carleson [2]; they are more ”hidden” and somewhat more embedded in the
overall argument in the calculations of [5, 26] which are based on complex-analytic arguments,
but still present, see for example [5, page 89 and Section 2.5.1.8] and [26, Theorem 9]. The main
objective of this paper is to present the rigorous results of such computations for a relatively
large number of small parameter intervals.

2. Expansion outside the critical neighborhood

As mentioned above, the dynamics of a map f : I → I is very much influenced by whether f
is expanding or contracting. Even if f is not expanding we can still formulate the notion of f
being expanding in certain region of the phase space.

Definition 2.1. For λ > 0, f : I → I is λ-uniformly expanding outside ∆ ⊂ I if there exists
C > 0 s.t. for every x ∈ I and every n ≥ 1 with f i(x) /∈ ∆ for all i = 0, 1, . . . , n− 1, we have

|(fn)′(x)| ≥ Ceλn.

Notice that f is trivially λ-uniformly expanding outside ∆ if |f ′(x)| > eλ > 1 for all x /∈ ∆
(in which case one could also take C = 1). However, in many situations this property holds
even if the derivative of f outside ∆ is very small in some regions. Indeed, a celebrated and
important result of Mañé [18] says that if all periodic orbits of f are hyperbolic repelling (i.e.,



4 ALI GOLMAKANI, STEFANO LUZZATTO, AND PAWE L PILARCZYK

|(f `)′(p)| > 1 where ` is the period of the periodic orbit p) then there exists some λ > 0 such that
f is λ-uniformly expanding outside any neighborhood ∆ of the critical points (i.e., all the points
c such that f ′(c) = 0), and even more generally, even if f has attracting periodic orbits then it
is λ-uniformly expanding outside any region ∆ as long as ∆ contains the critical points and the
“immediate basins” of the attracting periodic orbits. This theorem has multiple consequences
and corollaries and is arguably one of the most fundamental technical results in one-dimensional
dynamics, on which many deep and important subsequent results are based.

Mañé’s Theorem is an abstract “existence” result, and a natural question, and indeed the
question we address and study in this paper, is that of an explicit numerical study of the
size of the region ∆ and the expansivity exponent λ in specific examples, in particular in the
quadratic family, which we use as a case-study. The computational techniques required for a
rigorous numerical investigation of this problem were developed in a previous paper [3]. Here
we further refine those techniques and apply them to a large-scale and systematic study of the
entire relevant parameter space.

In order to formulate our results, we introduce some definitions as follows. In the case of
maps fa belonging to the quadratic family, with a ∈ Ω, it is known that there can always be at
most one attracting periodic orbit and that its immediate basin is a neighborhood of the critical
point c = 0, and that all other periodic orbits are always hyperbolic repelling. This allows us to
make the following definitions. For each a ∈ Ω, let

δa := inf{δ > 0 : fa is uniformly expanding outside ∆ = (−δ, δ)}.

If fa has a periodic attractor then δa > 0, and either δa or −δa are boundary points of the
immediate basin of attraction of the periodic orbit. In this case we can define

λa := sup{λ : fa is λ-uniformly expanding outside ∆a = (−δa, δa)}

and, by the Theorem of Mañè mentioned above, we always have λa > 0. If fa does not have
periodic attractors, then δa = 0, i.e., fa is uniformly expanding outside every neighborhood of
the critical point. In this case we define

λa := lim
ε→0
{sup{λ : fa is λ-uniformly expanding outside (−ε, ε)}}.

In general, we obviously have λa ≥ 0 and, surprisingly, for almost every a ∈ Ω+ we even have
λa > 0 [19], meaning that fa is in fact uniformly λ-expanding outside every neighborhood of
the critical point for some λ independent of the neighborhood. Notice, however, that fa is not
λ-uniformly expanding for any λ if ∆ reduces just to the single critical point itself.

We now extend these definitions to intervals of parameter values. For a closed non-trivial
interval ω ⊆ Ω, we let

δω := sup
a∈ω
{δa} = inf{δ > 0 : fa is uniformly expanding outside ∆ = (−δ, δ) for all a ∈ ω}.

Since the set of regular parameters with attracting periodic orbits is open and dense, every
non-trivial interval of parameters must contain some such parameter, and therefore we always
have δω > 0. Given a radius δ of a critical neighborhood ∆ = (−δ, δ), we let

λω(δ) := inf{λ > 0 : fa is λ-uniformly expanding outside ∆ = (−δ, δ) for all a ∈ ω}.

In the remaining part of the paper, we systematically analyze the parameter space Ω for
the quadratic family. We subdivide it into a large number of small subintervals, and obtain a
collection of rigorous explicit upper bounds δ̂ω ≥ δω for δω for each of the subintervals ω, and
lower bounds λ̂ω ≤ λω(δ̂ω), which are expected to approximate λω(δω). Note, however, that

λ̂ω is, in general, neither an upper nor a lower bound for λω(δω); this is due to the fact that

the overestimate in calculating δ̂ω implies that a larger critical neighborhood is considered when
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determining λ̂ω, which may increase the chance for computing a larger expansivity exponent
than for δω. For many parameter intervals ω we compute constants δ̂ω, λ̂ω and prove that

for every a ∈ ω, the map fa is λ̂ω-uniformly expanding outside (−δ̂ω, δ̂ω).

3. Numerical results and discussion

We now give plots which summarize the numerical results we obtained. Details about the
numerical algorithms and procedures will be given in Section 4 together with various remarks
about the computational issues involved. We emphasize that all the results are absolutely
rigorous.

We subdivide the parameter interval Ω = [1.4, 2] into N = 60,000 adjacent subintervals

{ωi}N−1
i=0 of essentially equal size; see Section 4.1 for the precise statement and the technical

details of this subdivision. In order to simplify the notation, we omit the index i when describing
the computations done for each individual interval ωi.

For each parameter interval ω, we (attempt to) compute a possibly tight upper bound δ̂ω on
δω, as described in Section 4.3. The computation was successful for 37,727 out of the 60,000
parameter intervals yielding Figure 2 which shows a plot of the value δ̂ω versus the parameter for
all intervals of parameters for which such computation was successful. Each of the 37,727 data
points is plotted as a dot surrounded by a small hollow circle. The circles tend to accumulate in
some areas, and their superposition may occasionally give the impression of thick (black) dots.

The lack of success in the calculation for a specific parameter interval ω may be due to the fact
that ω intersects, or is very close to, some region of regular parameters with attracting periodic
orbits with relatively large immediate basins, e.g., larger than the maximum size of 0.01 that
we (somewhat arbitrarily) chose for the maximal allowed radius of the critical neighborhood.
This is clearly the case, for instance, for the smaller parameters a . 1.55 and for the large
“window” around a ≈ 1.77 corresponding to low period attracting periodic orbits which are
already obvious from the bifurcation diagram in Figure 1. Although choosing a weaker constraint
on the radius of the critical neighborhood (e.g., 0.1) would considerably increase the number of
successful calculations, in a longer perspective we are interested in further arguments regarding
the measure of parameters for which “stochastic” dynamics occurs, and for this purpose it is
absolutely necessary that the radius is very small; we expect that we would need the radius to be
definitely below 0.01, maybe even below 0.001. Moreover, expansivity in the phase space is much
less interesting if it takes place very far from the critical point only. Therefore, by specifying
the restrictive constraint on the radius of the critical neighborhood, we focus our attention on
the results that are important from a wider perspective.

Parameter intervals for which the computation was successful, on the other hand, indicate a
good deal of expansion, and therefore very probably a large proportion of stochastic parameters,
especially if the expansion occurs outside some small critical neighborhoods. One perhaps note-
worthy feature of Figure 2 consists of the several “vertical” rows of dots, occurring for example
around a ≈ 1.65. These seem to suggest the existence of a larger interval, formed by the union of
a number of the smaller intervals we use in the computation, on all of which we have expansion
outside the largest critical neighborhood of radius 0.01, but such that some subintervals continue
to show expansion even outside much smaller critical neighborhoods. Other curious patterns are
the very short but thick diagonal patterns occurring in several places of the graph, which are
most likely due to the specific method of computing the expansion exponent, based on a priori
defined sub-intervals.

For each parameter interval ω for which the computation of δ̂ω was successful, we compute a
lower bound λ̂ω for the expansion exponent λ outside the critical neighborhood of radius δ̂ω, fol-
lowing the procedure described in Section 4.2, using the uniform subdivision of the complement
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Figure 2. The radius δ̂ω of the symmetric interval ∆ω around the origin for
which it was possible to prove that fa is λ-uniformly expanding outside ∆ω with
some λ > 0 for all a ∈ ω, computed for each interval ω with the procedure
described in Section 4.3. The circled dots indicate the pairs (ω, δ̂ω).

of the critical neighborhood to k−1 intervals, with k = 20,000; see Section 4.4 for a justification
of this choice of the value of k. The results of this computation are summarized in Figure 3.

Perhaps the main thing to notice here is how reasonably well distributed are the computed
values of λ̂ω, without any particular “jumps” or “thresholds.” We also notice that there are
a few parameter intervals with particularly low values of λ̂ω, forming what looks almost like
a horizontal line very close to 0; more precisely, there are 1,729 intervals out of 37,727 (which

makes 4.6%) with λ̂ω < 0.01. It seems that these are significant underestimates of the true values
of λω, as we discuss in more detail in Section 4.4. Indeed, we believe that most of these estimates
represented in Figure 3 are underestimates due to the fact that improving the estimates requires
a significant and major increase in required computational cost; we discuss this issue more in
detail in the next section.

An obvious question is whether there is any correlation between the computed values of λ̂ω
and those of δ̂ω; a naive conjecture might be that smaller critical neighborhoods imply a smaller
expansivity exponent. This is, however, not the case, as shown in Figure 4 in which the values of
λ̂ω are plotted against the corresponding size δ̂ω of the critical neighborhood. Indeed, the picture
is perhaps most remarkable in the total lack of correlation it shows between these two quantities,
where both large and small values of λ̂ω are essentially equally likely to correspond to relatively
large or small critical neighborhoods. This is in fact consistent with the known qualitative
theory of the quadratic family which, as mentioned above, says that for almost all stochastic
parameters the expansivity constant is uniformly bounded from below for any arbitrarily small
critical neighborhood.
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Figure 3. Values of λ̂ω for which it was possible to prove that fa is λ̂ω-uniformly
expanding outside ∆̂ω = (−δ̂ω, δ̂ω) for all a ∈ ω. The circled dots indicate the

pairs (ω, λ̂ω) for which the computation was successful.

Figure 4. The computed pairs of values (δ̂ω, λ̂ω) for those subintervals of Ω
for which the computation was successful, indicated by circled dots.
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A combined plot of all the three values: the parameter a and the corresponding values of δ
and λ, is available from the project’s website http://www.pawelpilarczyk.com/quadratic/ as an
animation of a collection of points in the 3-dimensional Euclidean space.

4. Computational procedures

The computation of δ and λ is essentially based on the procedures developed in [3], with some
minor modifications, including in particular the use of a new and much more efficient algorithm
in one part of the calculation, see discussion in Section 4.2 below. We clarify selected details
and briefly outline the methods in this section and refer the interested reader to [3] for more
comprehensive explanations.

The source code of the specific software crafted for this paper as well as raw results of the
computations are available at http://www.pawelpilarczyk.com/quadratic/. The computations
can be run at multiple machines (e.g., at a computer cluster) in a convenient way, using the
flexible dynamic parallelization scheme introduced in [21], which is built into the software.

4.1. Calculation of sub-intervals of Ω. We use double-precision floating-point numbers fol-
lowing the ANSI/IEEE 754 standard, further called representable numbers, which are available
from the level of the C++ programming language, and implemented at the hardware level
in modern processors. For a real number α, let α̂ denote its representable approximation.
In order to subdivide the parameter interval [1̂.4, 2] into N = 60,000 adjacent subintervals

{ωi}N−1
i=0 of equal size (up to rounding), we first select the subdivision points. Namely, for each

i ∈ {0, . . . , N}, define

ϑi := 1̂.4 +
(i/ gcd(i,N))(2− 1̂.4)

N/ gcd(i,N)
,

where gcd(i,N) denotes the greatest common divisor of i and N , and all the operations in
the formula are done in double-precision floating-point arithmetic, with rounding the result of
each operation to the nearest representable number (this is hardware-supported). Then we set
ωi := [ϑi, ϑi+1]. The purpose of truncating the fraction i/N by the gcd(i,N) is that we would
like to make sure that the endpoints of the intervals computed for a finer subdivision, e.g., for
N = 120,000, agree with those for a coarser one, which need not be the case otherwise, due to
differences in rounding.

In order to avoid notation overload, in what follows, whenever explicit values are mentioned for
endpoints of an interval ω, e.g., [1.99999, 2], we always mean their representable approximation.

4.2. Computation of a lower bound for the expansion exponent λ. Given an interval
ω ⊂ Ω and a real number δ > 0, we compute a lower bound for λ > 0 such that fa is uniformly
expanding outside ∆ := (−δ, δ) for all a ∈ ω, using a graph approach introduced in [3] with a
uniform subdivision of the complement of the critical neighborhood into a given number k−1 of
intervals. However, we introduce one major improvement. Namely, we use a new algorithm [22]
for computing the minimum cycle mean in a directed graph, instead of original Karp’s algorithm
[9], which was applied in [3]. This tremendously reduces the memory usage, from O(k2) to O(k).
For example, the previous algorithm required some 400MB RAM for k = 5,000, and with the
new approach the memory usage drops down to some 12MB for the same graph. This difference
is more profound for large graphs: Over 50GB RAM required for k = 50,000 now reduces to
some 20MB. This improvement allows us to use much larger values of k than it was possible
previously in [3], and shifts the bottleneck from memory requirements to time constraints; see
the discussion in Section 4.4.

The basic idea of our approach to the computation of a lower bound for λ is to reduce the
problem to one of bounding the mean weights of paths in certain weighted digraphs (directed
graphs) related to the map f under consideration. We let G = (V,E,w) denote a weighted finite

http://www.pawelpilarczyk.com/quadratic/
http://www.pawelpilarczyk.com/quadratic/
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digraph, where V denotes the finite set of vertices, E ⊂ V ×V is the set of edges, and w : E → R
is the weight function. A path is a nonempty finite sequence of edges Γ = (e1, . . . , en) such that
ej = (v0

j , v
1
j ) ∈ E and v1

j = v0
j+1. The path Γ is called a cycle if v0

1 = v1
n. The weight and mean

weight of a path Γ = (e1, . . . , en) are defined by

W (Γ) =
n∑
j=1

w(ej) and W (Γ) =
W (Γ)

n
,

respectively.
In the setting of a quadratic map fa as above, and a critical neighborhood ∆, we consider a

collection of intervals I = {Ij | j = 1, . . . , k} with pairwise disjoint interiors and which cover
I \∆, and say that the weighted digraph G = (V,E,w) is a representation of f on I \∆ provided
that:

(a) V = I ∪ {cl ∆};
(b)

{
e = (I1, I2) ∈ I × V | f(I1) ∩ I2 6= ∅

}
⊂ E

(c) For each e = (I1, I2) ∈ E, w(e) ≤ inf
{

log
∣∣Df(x)

∣∣ : x ∈ I1 ∩ f−1(I2)
}

.

Observe the following straightforward relationship between the weight of a path and the
derivative along points whose orbit is described by the path. Given a point x ∈ I \ ∆ and a
path Γ = (e1, . . . , en) such that ej = (Ij−1, Ij) and f j(x) ∈ Ij for all j = 0, . . . , n, we have

(1) log
∣∣Dfn(x)

∣∣ =

n−1∑
j=0

log
∣∣Df(f j(x)

)∣∣ ≥W (Γ).

The representation of the map and its derivatives to a weighted graph, and in particular the
bound (1), reduce the problem of determining expansion estimates to the computation of mean
weights of certain paths. Specifically, the minimum mean weight of any cycle in G provides a
lower bound for the exponent λ of interest. This is the quantity computed by Karp’s algorithm [9]
or its improvement [22].

Note that the computations are done using rigorous numerics (with controlled rounding di-
rections), and are conducted for the entire range ω of the parameters a at a time (by taking
lower or upper bounds on the corresponding values, where appropriate).

4.3. Computation of an upper bound on δω. Given an interval ω, a possibly tight upper
bound for δω is computed in the following way. For δ > 0, let λ̂ω(δ) denote the lower bound for
the expansion exponent outside (−δ, δ), computed with the procedure described in Section 4.2
for the parameter interval ω, using a coarse partition of k = 1,000 subintervals. Starting with
an a priori chosen δ0 := 0.001, we first compute λ̂ω(δ0). If λ̂ω(δ0) ≤ 0 then the computations for
ω are considered to fail, and no suitable upper bound on δω is reported. Otherwise, a possibly
smaller number δ̂ω ∈ (0, δ0] is found for which λ̂ω(δ̂ω) > 0, using 20 steps of the bisection method

applied to [0, δ0] as follows. Define δ
(0)
bad := 0 and δ

(0)
good := δ0. For n = 1, . . . , 20, proceed as

follows. Define δ
(n)
test := (δ

(n−1)
bad + δ

(n−1)
good )/2. Compute λ̂ω(δ

(n)
test). If λ̂ω(δ

(n)
test) > 0 then define

δ
(n)
bad := δ

(n−1)
bad and δ

(n)
good := δ

(n)
test. Otherwise, define δ

(n)
bad := δ

(n)
test and δ

(n)
good := δ

(n−1)
good . In this way,

a gradually smaller interval is constructed such that its right-hand-side endpoint is proved to be
a valid upper bound for δω, which is not the case for its left-hand-side endpoint. The number

δ
(20)
good obtained in this procedure is further denoted as δ̂ω and constitutes a rigorous upper bound

for δω.
At this point we remark that in spite of the successful computation of a positive expansivity

exponent for δ̂ω using the coarse partition of k = 1,000 subintervals, in some rare cases it may
happen that λ̂ω computed using a finer partition turns out to be negative. This may be due to
differences in the subdivision of the interval, and should be treated as a numerical artifact; note
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that even if this happens, the result is still mathematically correct, but provides no valuable
information. Therefore, we also treat this situation as a failure in the computation of δ̂ω and λ̂ω.

4.4. The choice of the partition size k. As it was already discussed and shown in [3], the
larger the number of partition elements k > 0 is chosen, the higher the lower bound for the
expansion coefficient λ should be expected in general. However, the time complexity of the
algorithm for computing this bound is O(k3), which practically means that the cost increases
considerably with the increase in k.

In order to find a reasonable number k for our comprehensive computations, we conducted a
test with ω = [1.99999, 2] and a selection of different values k, ranging from 1,000 to 100,000.

The computed values of λ̂ω as a function of k (note the logarithmic scale at the k axis), as well
as the computation time (note the logarithmic scale at both axes) are indicated in Figure 5.
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Figure 5. The exponent λ̂ω (the plot at the left-hand side) and the time tk of

computation of the exponent λ̂ω (the plot at the right-hand side) as a function
of the partition size k, computed for ω = [1.99999, 2].

As one can see, the computed exponent λ̂ω is essentially 0 up to a certain threshold, and
gradually increases in a step-wise manner afterwards. It seems that taking too low a value for
k does not allow to see the expansivity at all, and then gradually better estimates are obtained.
We conducted the computation of λ̂ω for N = 60,000 and a few values of k between 1,000 and
20,000; see Figure 6. This experiment shows that the discussed threshold is different for different
parameter intervals.

Out of the 37,727 subintervals for which the computation of the expansivity exponent was
successful at k = 20,000, a value λ̂ω > 0.001 is encountered in all but 489 cases when k ≤ 20,000,
which constitutes almost 98.7% of all the cases. Taking this into consideration, and also bearing
in mind the cost of the computations (which increases nonlinearly with the increase in k), we
decided to use k = 20,000 for all the plots discussed in Section 3. Indeed, this value of k seems
to be beyond the threshold that allows the computation of a reasonable exponent λ̂ω for a vast
majority of intervals ω, yet the computation cost is reasonable and takes a little more than 3
days on a relatively modern server capable of running 32 processes at the full speed. Therefore,
it seems that there is no point in increasing k any further. This justifies our choice of k.
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[13] S. Luzzatto and M. Viana. 2000. Positive Lyapunov exponents for Lorenz-like families with criticalities.
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