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Abstract. We prove that shadowing (the pseudo-orbit tracing property), pe-

riodic shadowing (tracing periodic pseudo-orbits with periodic real trajecto-
ries), and inverse shadowing with respect to certain families of methods (tracing

all real orbits of the system with pseudo-orbits generated by arbitrary methods

from these families) are all generic in the class of continuous maps and in the
class of continuous onto maps on compact topological manifolds (with or with-

out boundary) that admit a decomposition (including triangulable manifolds

and manifolds with handlebody).

1. Introduction. Discrete-time (semi)dynamical systems are often investigated
by means of numerical simulations, in which approximate (semi)trajectories are
obtained in the iterated process of computing the image of a point by the map
that generates the system. The (typically small) errors introduced at each step can
accumulate, so the pseudo-orbits computed numerically may turn out to be very
different from the real orbits of the system under investigation. We say that a map
has the pseudo-orbit tracing property, also called shadowing, if arbitrarily close to
the orbits computed numerically there exist real trajectories of the system, provided
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that the precision of the computations is high enough (obviously, the precision that
is necessary depends on the required closeness); see Definition 2.3 below for the
technical formulation of this feature. The shadowing property can provide a pow-
erful tool for proving that the result of a numerical simulation describes dynamics
that is indeed present in the system, and is not merely a side effect of errors accu-
mulating during the computation. This is especially important if some interesting
(complicated) trajectories are observed whose existence is not easy to prove ana-
lytically (see [16, 17] for examples of possible aplications). A subtle question is, in
particular, whether a periodic pseudo-orbit encountered in a numerical simulation
corresponds to a real periodic trajectory of the system. This is not guaranteed
by shadowing alone; however, a variant of this property called periodic shadowing
provides this feature; see Definition 2.3 for details.

Throughout the recent years, many researchers have worked on the subject of
shadowing, so presently it is posible to devote entire monographs solely to this topic,
and several tools for proving shadowing for specific dynamical systems have been
developed (see [27, 28] and references therein).

Roughly speaking, shadowing guarantees that the numerically observed trajecto-
ries correspond to real orbits in the system under investigation. A question comple-
mentary in a sense is whether all trajectories present in the system can be actually
observed using a numerical method that produces pseudo-orbits. Namely, we say
that a map has the inverse shadowing property with respect to a given class of (nu-
merical) methods (as in Definition 2.4) if for every method of sufficient precision,
every orbit of the dynamical system is traced by a close pseudo-orbit generated by
the method (and the precision that is necessary depends on the required closeness);
see Definition 2.5 for details.

Taking the importance of shadowing into consideration, the question of whether
this is a frequent property of dynamical systems or not, is of considerable interest.
Unfortunately, it is impossible to give a single satisfactory answer to this question,
since what is common in one class can be rare in another, and the class under
consideration depends on a particular application. One of widely accepted methods
for indicating that a property is typical is proving its genericity. The classical version
of the shadowing lemma was proved in the 1970s independently by Anosov [1] and
Bowen [4] in the context of diffeomorphisms (following the general trend of working
in this context at that time), and supposedly this is the main reason for why the
question of genericity of shadowing has been studied almost exclusively for invertible
mappings.

The first result on the genericity of shadowing in the class of homeomorphisms
was obtained for the unit circle [33], and was followed by the result for homeomor-
phisms on a compact manifold with dimension smaller than or equal 3 [26], and
for homeomorphisms on any smooth compact manifold without boundary [30]. Re-
cently, it has been proved that both shadowing and periodic shadowing are generic in
the class of homeomorphisms on a compact smooth manifold, possibly with bound-
ary [19, 21]. It is worth to note that the periodic shadowing property was introduced
in [7] as a tool for proving existence of periodic orbits; another method for proving
existence of periodic orbits might be a combination of shadowing with a certain
form of expansivity, like in Bowen’s classical decomposition theorem [2]; however,
hyperbolic maps are not generic. It has also recently been proved that the shadow-
ing property is generic in the class of Z2-actions on the interval [20] and that the
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inverse shadowing property is generic for homeomorphisms on a compact smooth
manifold, possibly with boundary [12, 23].

These results provide considerable amount of information about genericity of
shadowing in the invertible case. However, it is not clear whether these maps are
representative enough in the entire class of semidynamical systems. Definitely, in
dimension one they are not, because all the maps interesting from the dynamical
point of view (that is, those with positive topological entropy) are non-invertible
(because positive topological entropy is generated by horseshoes [24]). Unfortu-
nately, there are very few results on genericity of shadowing in dimension one in
the non-invertible setting. In particular, it is known that shadowing is generic for
continuous maps on the unit interval and on the unit circle [25]. Moreover, almost
every tent map has the shadowing property [9], which is also true for a larger class
of piecewise linear maps [6, 9].

As far as we are aware, there is no proof in the literature that shadowing is generic
in the class of (possibly non-invertible) continuous surjections or, more widely, con-
tinuous maps in dimension 2 or higher. The main aim of our work is to contribute
towards filling this gap by proving the following theorems:

Theorem 1.1. Let M be a compact topological manifold that admits a decompo-
sition (as in Definition 2.1). Then the shadowing property is generic in the class
C(M) of continuous maps on M , as well as in the class S(M) of continuous onto
maps on M .

Theorem 1.2. Let M be a compact topological manifold that admits a decomposi-
tion (as in Definition 2.1). Then the periodic shadowing property is generic in the
class C(M) of continuous maps on M , as well as in the class S(M) of continuous
onto maps on M .

Theorem 1.3. Let M be a compact topological manifold that admits a decompo-
sition (as in Definition 2.1). Then the inverse shadowing property with respect
to the family TS as well as with respect to the family TH (see Definition 2.6) is
generic in the class C(M) of continuous maps on M , as well as in the class S(M)
of continuous onto maps on M .

In Section 2, we introduce the notation and set up several definitions and as-
sumptions used further in the paper. We also recall necessary background material.
In Section 3, we prove Theorems 1.1, 1.2, and 1.3 through a series of lemmas and
propositions.

2. Preliminaries. We begin with discussing the assumptions on the manifold in
Section 2.1. Then we recall the necessary definitions related to shadowing in Sec-
tion 2.2 and to inverse shadowing in Section 2.3. We conclude with recalling the
definition of a covering relation and providing some relevant results in Section 2.4.

2.1. Manifolds and decompositions. Denote the set of nonnegative integers
by N. Denote the unit open ball in Rk by Ik.

Let M be a compact k-dimensional (k ≥ 1) topological manifold (with or without
boundary). Since M is a second countable Hausdorff regular space, it is metrizable,
so without loss of generality it can be assumed that M is endowed with a metric d
compatible with the topology on M . For x ∈ M and r > 0, let B(x, r) denote the
closed ball of radius r centered at x. Let

A = {(H1, φ1), . . . , (Hl, φl)}
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be a finite atlas on M , where φi : Hi → Ik if M is a manifold without boundary

and φi : Hi → Ik if M is a manifold with boundary. By replacing the sets Hi with
smaller ones whenever necessary, it can be assumed without loss of generality that

each φi can be extended to an injective continuous map φi : Hi → Ik if M is a
manifold without boundary.

Definition 2.1. Let M be a compact k-dimensional (k ≥ 1) topological manifold.
A finite family S of pairwise disjoint open subsets of M is called a decomposition
of M if M =

⋃
U∈S U , and each U is homeomorphic to a closed ball in Rk. If there

exists a decomposition of M then we say that M admits a decomposition.

Note that triangulable manifolds or manifolds with handlebody admit a decom-
position. It is known that all compact manifolds of dimension at most 3 are tri-
angulable [13, 3]. Moreover, all compact manifolds of dimension at least 6 possess
a handlebody [14]. On the other hand, an example of a 4-dimensional compact
manifold is known which does not admit triangulation [11]. It can also be proved
that for each D > 4, there exists a closed manifold of dimension D which cannot be
triangulated [15]. However, some conditions sufficient for triangulation are known.
For example, all smooth manifolds are triangulable [5, 32].

If S is a decomposition of M then it is easy to see that by applying appropriate
consecutive subdivisions of the sets in S, it is possible to construct a sequence
{Sn}∞n=0 of decompositions of M satisfying the following conditions:

(i) S0 = S,
(ii) diam(Sn) := max{diamU | U ∈ Sn} < 1

n for n ≥ 1,
(iii) for every n ∈ N, each set U ∈ Sn+1 is contained in some set V ∈ Sn.

Moreover, by replacing S with Sn for a suitably large n, one can make diamS
smaller than the Lebesgue number of the covering of M by the charts H1, . . . ,Hl.
This can be understood as some kind of consistency of S with A, because it implies,
in particular, the fact that the closure of every set U ∈ S is contained in some chart
Hi, i ∈ {1, . . . , l}.

From now on we shall assume that the manifold M admits a decomposition S
with diamS smaller than the Lebesgue number of the covering of M by the charts
H1, . . . ,Hl, and that {Sn}∞n=0 is a sequence satisfying the conditions (i)–(iii).

Since our reasoning is going to be conducted locally in the charts of the atlas A
or in the sets of the decompositions Sn, for simplicity of notation, we are going to
describe it as if it was done in (subsets of) Rk.

2.2. Shadowing. A homeomorphism f : M → M induces a dynamical system on
M whose trajectories (also called orbits) are {fn(x)}k∈Z, where x ∈ M . A contin-
uous map f : M →M induces a semidynamical system on M with semitrajectories
{fn(x)}k∈N. Since we are going to work exclusively with continuous maps that are
not necessarily invertible, in order to simplify the terminology, from now on we are
going to skip the prefix “semi-”.

Let C(M) and S(M) denote the spaces of all continuous maps on M and con-
tinuous surjections on M , respectively, both equipped with the complete metric

ρ0(f, g) := max{d(f(x), g(x)) | x ∈M}.

Definition 2.2. Let f : M →M . Let δ > 0. A sequence {yn}n∈N ⊂M is called a
δ-pseudo-orbit of f if

d(f(yn), yn+1) < δ for every n ∈ N.
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Moreover, if there exists N > 0 such that yn+N = yn for all n ∈ N then this
δ-pseudo-orbit is called periodic.

Definition 2.3. A map f : M → M has the shadowing property (or: periodic
shadowing property) if for every ε > 0 there exists δ > 0 satisfying the following
condition: for every δ-pseudo-orbit (or: periodic δ-pseudo-orbit, respectively) y =
{yn}n∈N there exists an orbit (or: a periodic orbit, respectively) x = {xn}n∈N =
{fn(x0)}n∈N, which ε-traces y, that is,

d(xn, yn) ≤ ε for every n ∈ N.
We would like to remark that the notion of a δ-pseudo-orbit and that of ε-tracing

both do depend on the metric d chosen at the manifold M in Section 2.1, and thus
it might potentially be the case that some maps may have a shadowing-related
property (like shadowing, periodic shadowing, or inverse shadowing discussed in
Section 2.3) with respect to one metric and lack this property with respect to
another equivalent but not strongly equivalent metric. However, in what follows,
we prove that there exist residual sets of maps which have each of the considered
properties, that is, we prove that each of these properties is satisfied for a countable
intersection of open and dense sets in the complete metric space of continuous
maps on M or continuous onto maps on M with the C0 topology. And this result
is independent of the choice of a metric on M compatible with its topology.

2.3. Inverse shadowing. Let MN be the compact space of the one-sided sequences
{xn}n∈N ⊂M , endowed with the Tikhonov product topology.

Definition 2.4. Given δ > 0, a δ-method for a map f : M → M is a mapping
χ : M →MN such that for every x ∈M , the sequence χ(x) is a δ-pseudo-orbit of f
with χ(x)0 = x. We say that a family T = {Tδ | δ > 0} of classes Tδ of δ-methods
is complete if Tδ 6= ∅ for every δ > 0.

Definition 2.5. Let f : M →M and let T = {Tδ | δ > 0} be a complete family of
classes Tδ of δ-methods for f . We say that f has the inverse shadowing property
with respect to T (called the T -inverse shadowing property for short) if for every
ε > 0 there exists δ > 0 satisfying the following condition: for every χ ∈ Tδ and for
every orbit x = {xn}n∈N there exists a point y ∈ M such that the δ-pseudo-orbit
χ(y) ε-traces x.

Taking into account potential applications, one is tempted to look for as large
a complete family as possible. However, this family cannot be too large, because,
for example, the family of classes of all the possible δ-methods for f is of limited
interest, since there is no structurally stable system satisfying the inverse shadowing
property with respect to this family [8]. Following [18, 29], in the present paper
we limit our attention to the following complete families of classes of continuous
δ-methods:

Definition 2.6. For every δ > 0, let TF,δ denote the class of all the possible δ-
methods for f . Define the following classes:

TH,δ := {χ ∈ TF,δ | there exists a homeomorphism ψ : M →M

such that χ(x)n+1 = ψ(χ(x)n) for all x ∈M,n ∈ N},

TS,δ := {χ ∈ TF,δ | there exists a family of continuous maps ψn : M →M

such that ρ0(ψn, f) < δ and χ(x)n+1 = ψn(χ(x)n) for all x ∈M,n ∈ N},
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TC,δ := {χ ∈ TF,δ | there exists a family of continuous maps ψn : M →M

such that χ(x)n = ψn(x) for all x ∈M,n ∈ N},
and define the following families: TH := {TH,δ | δ > 0}, TS := {TS,δ | δ > 0},
TC := {TC,δ | δ > 0}.

Unlike in the invertible case [29], where TH,δ ( TS,δ ∩ TC,δ, but TS,δ * TC,δ and
TC,δ * TS,δ, here we have the following result:

Observation 2.7. For all δ > 0, TH,δ ( TS,δ ( TC,δ.

Proof. The proper inclusion TH,δ ( TS,δ is obvious, and the inclusion TS,δ ( TC,δ
follows from the following argument. Take χ ∈ TS,δ. Take the corresponding family

{ψn}. Then the family of continuous maps {ψ̃n} defined by ψ̃n := ψn−1 ◦ · · · ◦ ψ0

provides in TC,δ the same δ-pseudo-orbits as the ones given in TS,δ by {ψn}. To see
that the inclusion is proper, note that whenever χ(x)N = χ(y)N for some N ≥ 0 in
TS,δ then χ(x)n = χ(y)n for all n ≥ N , which need not be the case in TC,δ.

We would like to point out the fact that in the invertible case (homeomorphisms)
the problem of C0 genericity of TH -inverse shadowing has already been investi-
gated [12], as well as C0 genericity of TS-inverse shadowing [23], and C0 genericity
of TC-inverse shadowing in the case of dimM ≤ 3 [22]. However, to our best knowl-
edge, there are no results concerning C0 genericity of any kind of inverse shadowing
in the noninvertible case (continuous maps), nor any results concerning TC-inverse
shadowing without the restriction on the dimension of the manifold (in both invert-
ible and noninvertible cases).

2.4. Covering relations. In the proofs related to periodic shadowing, we shall
need a special (simplified) version of covering relations introduced by Zgliczyński
and Gidea [34]. We recall the necessary terminology below, prove a simple lemma,
and quote two theorems from [34] that are going to be used in the sequel.

Let Dn denote the closed unit ball in Rn, and let Sn−1 := ∂Dn denote its
boundary, the unit sphere in Rn. Let N,L be closed balls in Rn, let f : N → Rn be a
continuous map, and let w be a nonzero integer. Define fc := (cL◦f◦c−1

N )|Dn : Dn →
Rn, where cN , cL : Rn → Rn are some homeomorphisms with cN (N) = Dn and

cL(L) = Dn. We say that N f -covers L with degree w, which we denote as N
f,w
=⇒ L,

if fc(∂D
n) ⊂ Rn \Dn and the local Brower degree deg(fc, D

n, 0) of the map fc in
Dn at 0 equals w (see [34, Appendix A] for a summary of properties of the local
Brouwer degree). Note that these conditions do not depend on the choice of cL
and cN .

Lemma 2.8. Let N and L be closed balls in Rn, and let f : N → Rn be a homeomor-

phism onto its image. If L ⊂ int f(N) then N
f,w
=⇒ L for some nonzero integer w.

Proof. For simplicity of notation, assume that N = L = Dn and fc = f . If n = 1
then f(∂N) consists of two endpoints of the segment f(N) containing the segment
L in its interior, and thus obviously 0 /∈ f(∂N). If n ≥ 2 then by Jordan-Brouwer
separation theorem, Rn \ f(∂N) consists of two connected components, a bounded
and an unbounded one, with f(∂N) being their common boundary. Obviously,
f(intN) is mapped to the bounded component, which therefore contains L. In
particular, 0 /∈ f(∂N) also if n ≥ 2. This implies that the local Brouwer degree
of f in N at 0 is well defined. The fact that f is a homeomorphism onto its
image implies that this degree is nonzero (which follows, for instance, from the
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multiplication property of the degree applied to id = f ◦ f−1). This concludes the
proof.

Theorem 2.9 (see [34], Theorem 13). If N
f,w
=⇒ L, then there exists ε > 0 such

that if ρ0(f, g) < ε then N
g,w
=⇒ L.

Theorem 2.10 (see [34], Theorem 9). If N0
f1,w1
=⇒ N1

f2,w2
=⇒ . . .

fk,wk
=⇒ Nk, then there

exists x ∈ intN0, such that (fi ◦ fi−1 ◦ . . . ◦ f1)(x) ∈ intNi for all i ∈ {1, . . . , k}.
Moreover, if N0 = Nk then x can be chosen in such a way that (fk ◦ fk−1 ◦ . . . ◦
f1)(x) = x.

3. Proof of genericity of shadowing, periodic shadowing, and inverse
shadowing. In order to prove Theorems 1.1, 1.2 and 1.3, we proceed as follows.
First, for each n ∈ N, we define the sets An, Ān and Ân of continuous maps on
M which satisfy certain conditions. The definitions are set up in such a way that
Ân ⊂ Ān ⊂ An. Then we prove that all An and Ān are open in C(M). (Note that

we do not prove that any Ân is open; the role of these sets is different from that of
An and Ān.) Next, we define the sets Bn, B̄n and B̂n as the infinite unions of all the

corresponding sets Am, Ām and Âm, respectively, with indices starting at n. Then
we prove that each of the sets B̂n is dense in C(M), and also that its intersection

with S(M) is dense in S(M). By the inclusion Ân ⊂ Ān ⊂ An, we infer the density
of the sets Bn and B̄n. Eventually, we prove that each f ∈ An satisfies the shad-
owing property with ε = 1

n , each f ∈ Ān satisfies the periodic shadowing property

with ε = 1
n , and each f ∈ An (sic!) satisfies the inverse shadowing property with

ε = 1
n . All these facts taken together will yield the desired results.

3.1. Definition of the sets An, Ān and Ân.

Definition 3.1. We say that a family of sets Q is inscribed into another family of
sets R if Q is a disjoint union of nonempty subfamilies QR, indexed by elements of
R, such that each Q ∈ QR is contained in R.

Definition 3.2. Given δ > 0, we say that a map f ∈ C(M) is δ-compatible with
a family Q of subsets of M inscribed into another family R of subsets of M if for
any U, V ∈ R, either f(U) ∩ V = ∅, or for some B ∈ QU the following holds:⋂

{g(B) | g ∈ C(M), ρ0(f, g) < δ} ⊃
⋃
QV .

(In other words, there exists B ∈ QU such that for all D ∈ QV and for all g ∈ C(M)
such that ρ0(f, g) < δ, we have g(B) ⊃ D.)

If additionally B
f,wD
=⇒ D for some B ∈ QU and each D ∈ QV with wD 6= 0 then

we say that f is strongly δ-compatible with Q and R.

For all n ∈ N, define the sets An, Ān and Ân in the following way.
Let An ⊂ C(M) be the set of all f ∈ C(M) for which there exists a finite family

Bn of pairwise disjoint closed balls in M such that Bn is inscribed into Sn and f is
δ-compatible with Bn and Sn for some δ > 0.

Let Ān ⊂ C(M) be the set of all f ∈ C(M) for which there exists a finite family
Bn of pairwise disjoint closed balls in M such that Bn is inscribed into Sn and f is
strongly δ-compatible with Bn and Sn for some δ > 0.

Finally, let Ân ⊂ C(M) be the set of all f ∈ C(M) for which there exists a
finite family Bn of pairwise disjoint closed balls in M such that Bn is inscribed
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into Sn and f is δ-compatible with Bn and Sn for some δ > 0, and additionally
f |B : B → f(B) is a homeomorphism for each B ∈ Bn.

As an immediate consequence of Lemma 2.8 and the above definitions, we have
the following result.

Observation 3.3. For all n ∈ N,

Ân ⊂ Ān ⊂ An.

3.2. Openness of the sets An and Ān.

Proposition 3.4. The set An is open in C(M). As a consequence, An ∩ S(M) is
open in S(M).

Proof. Let f ∈ An and let Bn and δ be provided for f by the definition of An. Since
Sn is a finite set, there exists a positive γ < δ such that for any two sets U, V ∈ Sn
for which f(U) ∩ V = ∅ we have

dist(f(U), V ) := min{d(x, y) | x ∈ f(U), y ∈ V } ≥ γ.
Consider h ∈ C(M) with ρ0(f, h) < min{γ2 ,

δ
2} and take U, V ∈ Sn for which

h(U) ∩ V 6= ∅. Then f(U) ∩ V 6= ∅, because otherwise

dist(h(U), V ) ≥ dist(f(U), V )− ρ0(f, h) ≥ γ
2 > 0,

which would be a contradiction. Moreover, by the triangle inequality,

ρ0(f, g) ≤ ρ0(f, h) + ρ0(h, g)

for any g ∈ C(M), so

{g ∈ C(M) | ρ0(h, g) < δ
2} ⊂ {g ∈ C(M) | ρ0(f, g) < δ}.

Hence it is easy to see that h is δ
2 -compatible with Bn and Sn. This completes the

proof.

Proposition 3.5. The set Ān is open in C(M). As a consequence, Ān ∩ S(M) is
open in S(M).

Proof. This follows from Theorem 2.9 and Observation 3.3.

3.3. Definition of the sets Bn, B̄n and B̂n, and proof of their density. For
each n ∈ N, define the sets Bn ⊂ C(M), B̂n ⊂ C(M) and B̄n ⊂ C(M) as follows:

Bn :=

∞⋃
m=n

Am, B̄n :=

∞⋃
m=n

Ām, B̂n :=

∞⋃
m=n

Âm.

The following is an immediate consequence of Propositions 3.4 and 3.5.

Observation 3.6. The sets Bn and B̄n are open in C(M) for all n ∈ N. In
particular, Bn ∩ S(M) and B̄n ∩ S(M) are open in S(M) for all n ∈ N.

For the purpose of proving the density of B̂n, we shall need the following lemmas.
The first one is a version of Tietze extension theorem, which we repeat after [10,
Theorem 4.1].

Lemma 3.7. Let X be an arbitrary metric space, let A be a closed subset of X, let
L be a locally convex linear space, and let f : A → L be a continuous map. Then
there exists an extension F : X → L of f (that is, a continuous map identical to f
on A), such that the image of F is contained in the convex hull of f(A).
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The second lemma provides some kind of stability of open sets being covered,
with respect to small perturbations of the map. This simplified version of [31,
Lemma 2.3] provides a sufficient tool for our purposes.

Lemma 3.8. Let A be a compact subset of E, and let f : A → F be a continuous
map, where E and F are finite-dimensional normed spaces. Let B be a closed
subset of A such that f |B : B → f(B) is a homeomorphism. Then for any closed
set D ⊂ int f(B) there exists ε > 0 such that for every continuous map g : A→ F ,
if g satisfies the condition

ρ0(f, g) := max{d(f(x), g(x)) | x ∈ A} < ε,

then D ⊂ g(B).

Finally, we prove the following result which is a key ingredient in the proof of
density of B̂n.

Lemma 3.9. Let f ∈ C(M) and n ∈ N. Then for any ε > 0 there exists a map
g ∈ C(M) such that ρ0(f, g) < ε, for every U, V ∈ Sn we have

f(U) ∩ V 6= ∅ ⇐⇒ g(U) ∩ V 6= ∅,

and there exists a family of pairwise disjoint closed balls K = {KU,V | U, V ∈
Sn and f(U)∩V 6= ∅} such that KU,V ⊂ U , g(KU,V ) ⊂ V , and f(M) ⊂ g(M \

⋃
K).

In particular, if f ∈ S(M) then g ∈ S(M).

Proof. Take any ε > 0. For each U ∈ Sn, consider the nonempty family

Sn,U := {V ∈ Sn | f(U) ∩ V 6= ∅}

and the compact set

WU :=
⋃
{V | V ∈ S \ Sn,U}.

Define

γ := min{dist(f(U),WU ) | U ∈ Sn} > 0

and take a δ > 0 smaller than both ε and γ, and also smaller than the Lebesgue
number of the covering of M by the seleced charts (see Section 2.1) to make sure
that every set whose diameter does not exceed δ lies entirely in some element of the
atlas A of M , and thus can be considered a subset of Rk up to a homeomorphism.

Because of the fact that f(U) ⊂ f(U) for each U ∈ Sn, and that each f(U)
is compact, for each U ∈ Sn there exists a finite set of points {xU1 , . . . , xUlU } ⊂ U
satisfying

f(U) ⊂
lU⋃
i=1

B(f(xUi ), δ4 ). (1)

For each U ∈ Sn and V ∈ Sn,U , there exists x0
U,V ∈ U such that y0

U,V = f(x0
U,V ) ∈

V . Let DU,V be the closed ball of radius δ
2 centered at y0

U,V . Note that DU,V ∩V 6= ∅
and diamDU,V ≤ δ.

For each U ∈ Sn and V ∈ Sn,U , let B0
U,V be a closed ball centered at x0

U,V

small enough that f(B0
U,V ) ⊂ DU,V . Let B1

U,V be a (possibly smaller) closed ball

contained in B0
U,V such that B1

U,V ⊂ U and B1
U,V ∩ {xU1 , . . . , xUlU } = ∅. Let {BU,V |

U ∈ Sn, V ∈ Sm,U} be a collection of (even smaller) closed balls that are mutually
disjoint and contained in the corresponding balls B1

U,V . Note that obviously BU,V ⊂
U and f(BU,V ) ⊂ DU,V for all U ∈ Sn and V ∈ Sn,U .
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Take a constant α > 0 small enough that for each U ∈ Sn, the balls
B(xU1 , α), . . . , B(xUlU , α) are mutually disjoint and contained in U , and f(B(xUi , α)) ⊂
B(f(xUi ), δ2 ) for all i ∈ {1, . . . , lU}, and also that for each V ∈ Sn,U ,

B(xUi , α) ∩BU,V = ∅. (2)

For each U ∈ Sn and V ∈ Sn,U , choose any xU,V ∈ BU,V and yU,V ∈ DU,V ∩ V .
By Lemma 3.7, there exist continuous maps gU,V : BU,V → DU,V satisfying

gU,V (xU,V ) = yU,V ,

gU,V |∂BU,V
= f |∂BU,V

.

For each U ∈ Sn and i ∈ {1, . . . , lU}, consider an arbitrary continuous onto map

g̃U,i : B(xUi ,
α
2 )→ B(f(xUi ), δ4 ). (3)

Again by Lemma 3.7, there exists a continuous map gU,i : B(xUi , α)→ B(f(xUi ), δ2 )
satisfying

gU,i|B(xU
i ,
α
2 )

= g̃U,i

gU,i|∂B(xU
i ,α) = f |∂B(xU

i ,α).

We put these maps together and extend them using f to obtain a map g ∈ C(M)
such that

g|BU,V
= gU,V ,

g|B(xU
i ,α) = gU,i,

g|M\C = f |M\C ,

where

C :=
⋃
{BU,V ∪B(xUi , α) | U ∈ Sn, V ∈ Sn,U , i ∈ {1, . . . , lU}}.

Note that g may only differ from f on BU,V and B(xUi , α), and the images of

these sets by both maps are simultaneously contained in DU,V and in B(f(xUi ,
δ
2 ),

respectively. Since the diameters of these sets do not exceed δ, it follows that

ρ0(f, g) ≤ δ < ε.

Moreover, if f(U) ∩ V 6= ∅ for some U, V ∈ Sn then we defined xU,V and yU,V
such that g(xU,V ) = yU,V , where xU,V ∈ BU,V ⊂ U and xU,V ∈ V , which implies

g(U)∩ V 6= ∅. On the other hand, if f(U)∩ V = ∅ then also g(U)∩ V = ∅, because
ρ0(f, g) ≤ δ < γ and d(f(U), V ) ≥ γ.

Finally, for each U ∈ Sn and V ∈ Sn,U , there exists a ball K̃U,V centered at

xU,V small enough to ensure that K̃U,V ⊂ BU,V and g(K̃U,V ) ⊂ V (thanks to the
openness of both U and V as well as continuity of g). By moving the center of each

of these balls slightly when necessary and decreasing the radius, the family {K̃U,V }
can be transformed to another family K = {KU,V } of closed balls, each contained in

the corresponding K̃U,V , such that g(KU,V ) ⊂ DU,V . The balls KU,V are mutually
disjoint, because so are the balls BU,V containing them. Recall that BU,V ⊂ U , and

thus KU,V ⊂ U . Moreover, g(KU,V ) ⊂ g(K̃U,V ) ⊂ V . Finally, by (1), (2), and the
fact that the map (3) is a surjection,

f(U) ⊂ g(U \BU,V ) ⊂ g(U \KU,V ).
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Since the sets g(KU,V1) ⊂ V1 and g(KU,V2) ⊂ V2 are disjoint whenever V1 6= V2, we
also have

f(U) ⊂ g(U \
⋃
{KU,V | V ∈ Sn,U}),

and thus

f(M) = f(
⋃
{U | U ∈ Sn}) ⊂

⊂ g(
⋃
{U \

⋃
{KU,V | V ∈ Sn,U} | U ∈ Sn}) = g(M \

⋃
K),

which completes the proof.

Now we are ready to prove density of B̂n. We keep this proof as elementary as
possible.

Proposition 3.10. The set B̂n is dense in C(M). Moreover, the set B̂n ∩S(M) is
dense in S(M).

Proof. Let f ∈ C(M). Let ε > 0. Take m > n such that 1
m < ε

2 . We are going to

modify f on some subsets of M so as to obtain a map f̃ that belongs to Âm and
satisfies ρ0(f, f̃) < ε.

Apply Lemma 3.9 to f , m, and ε
2 to obtain a map g ∈ C(M) and a family of

closed balls K = {KU,V | U ∈ Sm, V ∈ Sm,U}, where

Sm,U = {V ∈ Sm | f(U) ∩ V 6= ∅} = {V ∈ Sm | g(U) ∩ V 6= ∅}.

Then any map f̃ which coincides with g on the set M \
⋃
K satisfies

f(M) ⊂ g(M \
⋃
K) = f̃(M \

⋃
K).

In particular, if f ∈ S(M) then f̃ ∈ S(M), provided that f̃ ∈ C(M).
For each U ∈ Sm and V ∈ Sm,U , take a finite family of arbitrary pairwise disjoint

closed balls {BWU,V | W ∈ Sm,V }, all contained in the interior of KU,V . For each

BWU,V , take an arbitrary homeomorphism

ϕWU,V : BWU,V → Ṽ ,

where Ṽ is a closed subset contained in V (with V perceived as a ball in Rk) such

that Ṽ is homeomorphic with Ik (and thus with BWU,V ), and
⋃
{KV,W |W ∈ Sm,V } ⊂

int Ṽ . In this way, on each set

DU,V :=
⋃
{BWU,V |W ∈ Sm,V }

we have set up a continuous map

ϕU,V : DU,V → Ṽ ⊂ V,

which coincides with ϕWU,V on each BWU,V . Note that DU,V is a closed set contained

in the interior of KU,V ⊂ U and V is an open ball (i.e, a convex set in Rk up to a
homeomorphism), hence by Lemma 3.7 we can extend each continuous function

gU,V : DU,V ∪ ∂KU,V → V,

defined by

gU,V |DU,V
:= ϕU,V ,

gU,V |∂KU,V
:= g|∂KU,V

,
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to a continuous function

f̃U,V : KU,V → V

that coincides with gU,V on the set DU,V ∪ ∂KU,V . By putting all the functions

f̃U,V together and extending them on M using g, we obtain a function f̃ ∈ C(M),
such that

f̃ |KU,V
= f̃U,V

for each U ∈ Sm, V ∈ Sm,U , and

f̃ |M\⋃K = g|M\⋃K.
Observe that

ρ0(f̃ , g) ≤ max{ρ0(f̃U,V , g|KU,V
) | U ∈ Sm, V ∈ Sm,U} ≤ diamV ≤ 1

m < ε
2 ,

and thus

ρ0(f, f̃) ≤ ρ0(f, g) + ρ0(g, f̃) < ε.

Additionally, notice that

f(U) ∩ V 6= ∅ ⇐⇒ g(U) ∩ V 6= ∅ ⇐⇒ f̃(U) ∩ V 6= ∅

where the first equivalence comes from the conclusion of Lemma 3.9, and the second
one follows from the fact that f̃ differs from g only on closed balls contained in U
whose images by both maps are contained in V for all U ∈ Sm and V ∈ Sm,U .

It remains to show that f̃ ∈ Âm. Define the family of pairwise disjoint closed
balls

Bm := {BWU,V | U ∈ Sm, V ∈ Sm,U , W ∈ Sm,V }.
By construction of the balls BWU,V , the family Bm is obviously inscribed into Sm.

For each U ∈ Sm and V ∈ Sm,U , take any W = WU,V ∈ Sm,V . Note that

int f̃(BWU,V ) = int Ṽ ⊃
⋃
{B ∈ Bm | B ⊂ V } =

⋃
Bm,V =: D.

Therefore by Theorem 3.8 applied to A := KU,V , f̃ , B := BWU,V and D defined

above (note that, as usual, U and V can be considered as subsets of Rk up to a
homeomorphism), there exists a constant δU,V > 0 such that

D ⊂ h(BWU,V )

for all h ∈ C(M) with ρ0(f̃ , h) < δU,V . Take

δ := min{δU,V | U ∈ Sm, V ∈ Sm,U}.

Then ⋃
Bm,V ⊂

⋂
{h(B) | h ∈ C(M), ρ0(f̃ , h) < δ}

for every U, V ∈ Sm with f̃(U) ∩ V 6= ∅ and for each B := BWU,V ∈ Bm,U with the

chosen W = WU,V . Hence f̃ is δ-compatible with Bm and Sm. Moreover, by the

construction of f̃ , the map f̃ |B : B → f̃(B) is a homeomorphism for each B ∈ Bm.
This completes the proof.

As an immediate consequence of Observation 3.3 and Proposition 3.10, we have
the following result.

Corollary 3.11. The sets Bn and B̄n are dense in C(M). Moreover, the sets
Bn ∩ S(M) and B̄n ∩ S(M) are dense in S(M).
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3.4. Shadowing. We first show that each map f ∈ An satisfies the shadowing
property with ε = 1

n . Then we use this fact to prove the genericity of shadowing.

Proposition 3.12. Let n ≥ 1 and f ∈ An. Then there exists δ > 0 such that each
δ-pseudo-orbit of f is 1

n -traced by some orbit of f .

Proof. Let δ > 0 be a constant such that

δ < dist(f(U), V )

for every U, V ∈ Sn such that f(U) ∩ V = ∅.
Let {yi}i∈N be an arbitrary δ-pseudo-orbit for f . For each i ∈ N, let Ui be a set

in Sn containing the point yi in its closure. Then we have

dist(f(Ui), Ui+1) ≤ δ,

and hence

f(Ui) ∩ Ui+1 6= ∅.

By the fact that f is δ̂-compatible with some Bn and Sn for some δ̂ > 0, there exists
a sequence of closed balls {Bi}i∈N satisfying

Bi ⊂ Ui and f(Bi) ⊃ Bi+1 for all i ∈ N.

It is easy to see that then there exists a sequence of points {xi}i∈N such that

f j(xi) ∈ Bj for j = 0, 1, . . . , i.

Let x be an accumulation point of {xi}i∈N. Obviously,

x ∈
⋂
i∈N

f−i(Bi). (4)

Hence

d(f i(x), yi) ≤ diamUi <
1
n , (5)

which completes the proof.

Proof of Theorem 1.1. Let

B :=
⋂
n∈N
Bn.

By Observation 3.6 and Corollary 3.11, B is a residual subset of C(M), and also
B ∩ S(M) is a residual subset of S(M). It remains to prove that each f ∈ B has
the shadowing property.

Let f ∈ B and ε > 0. Take n ∈ N satisfying 1
n < ε. Since f ∈ Bn by definition

of B, f ∈ Am for some m ≥ n. Then by Proposition 3.12, there exists δ > 0 such
that each δ-pseudo-orbit of f is 1

m -traced by some orbit of f . The fact that 1
m < ε

completes the proof.

3.5. Periodic shadowing. Like in Section 3.4, we first prove that each map f ∈
Ān satisfies the periodic shadowing property with ε = 1

n , and then we use this fact
to prove the genericity of periodic shadowing.

Proposition 3.13. Let n ≥ 1 and f ∈ Ān. Then there exists δ > 0 such that each
periodic δ-pseudo-orbit of f is 1

n -traced by some periodic orbit of f .
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Proof. Let δ > 0 be a constant such that

δ < dist(f(U), V )

for every U, V ∈ Sn such that f(U) ∩ V = ∅. Let {yi}i∈N be a periodic δ-pseudo-
orbit for f , with yi+N = yi for some N > 0. For each i ∈ {0, . . . , N − 1}, let Ui be
a set in Sn containing the point yi in its closure. Put Ui+N := Ui for all i ∈ N to
extend this finite sentence by periodic repetition. Then

dist(f(Ui), Ui+1) ≤ δ,
and hence

f(Ui) ∩ Ui+1 6= ∅.
By the fact that f is δ̂-compatible with some Bn and Sn for some δ̂ > 0, there exists
a sequence of closed balls {Bi}i∈N satisfying

Bi = Bi+N , Bi ⊂ Ui, and f(Bi) ⊃ Bi+1 for all i ∈ N.

By the strong δ-compatibility of f , the balls Bi can be chosen in such a way that

B0
f,w1
=⇒ B1

f,w2
=⇒ . . .

f,wN
=⇒ BN = B0,

for some nonzero integers w1, . . . , wN . Hence, by Theorem 2.10, there exists a
periodic point x ∈ intB0 such that

f i(x) ∈ intBi for i ∈ {1, . . . , N}.
Obviously,

d(f i(x), yi) ≤ diamUi <
1
n ,

which completes the proof.

Proof of Theorem 1.2. The proof is essentially the same as proof of Theorem 1.1,
except that we use the sets Ān instead of An, and the sets B̄n instead of Bn. The
corresponding set B̄ :=

⋂
n∈N B̄n is residual by Observation 3.6 and Corollary 3.11,

and one can prove that each f ∈ B̄ has the periodic shadowing property using
Proposition 3.13.

3.6. Inverse shadowing. Analogously to the previous two sections, we first prove
that each map in An satisfies the inverse shadowing property with respect to the
family TS with ε = 1

n , and then we use this fact to prove that the inverse shadowing
property with respect to this class is generic.

Proposition 3.14. Let n ≥ 1 and f ∈ An. Then there exists δ > 0 such that for
every x ∈M and for every χ ∈ TS,δ there exists y ∈M satisfying

d(f i(x), χ(y)i) <
1
n for every i ∈ N.

Proof. The proof is similar to the proof of Proposition 3.12, hence we will skip some
details.

Let δ > 0 be a constant such that each f ∈ An is δ-compatible with some Bn
and with Sn. We can additionally assume that

δ < dist(f(U), V )

for every U, V ∈ Sn such that f(U) ∩ V = ∅.
Let χ ∈ TS,δ be an arbitrary δ-method. Let x ∈ M , and for each i ∈ N, let

Ui ∈ Sn be a set containing f i(x) in its closure. Let {ψi}i∈N be the sequence of
continuous maps that defines χ.
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From the definition of TS,δ, it follows that ρ0(f, ψi) < δ for all i ∈ N. The fact
that f is δ-compatible with Bn and Sn implies that there exists a sequence of closed
balls {Bi}i∈N satisfying

Bi ⊂ Ui and ψi(Bi) ⊃ Bi+1 for all i ∈ N.

Then there exists

y ∈
⋂
i∈N

(ψi−1 ◦ · · · ◦ ψ0)−i(Bi),

and hence

d(f i(x), χ(y)i) ≤ diamUi <
1
n ,

which completes the proof.

Observation 3.15. Since TH,δ ⊂ TS,δ for all δ > 0 (see Observation 2.7), the same
result as Proposition 3.14 also holds true for the family TH .

Proof of Theorem 1.3. The proof is the same as the proof of Theorem 1.1, except
that we use Proposition 3.14 and Observation 3.15 instead of Proposition 3.12. Note
that, in particular, we use the same sets An and Bn as those that appear in the
proof of Theorem 1.1.
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