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Abstract. A three equation model describing the evolution of the turbulence level,

averaged shear flow and sheared zonal flow is analyzed using topological properties of

the asymptotic solutions. An exploration in parameter space is done identifying the

attractor sets, which are fixed points and limit cycles. Then a more detailed analysis of

all Morse sets is conducted using topological-combinatorial computations. This model

allows the description of different types of transition to improved plasma confinement

regimes.

1. Introduction

Magnetically confined plasmas may go through sudden transitions in which confinement

improves and losses decrease. The first example of one of these transitions was the so-

called high confinement mode [19], and many forms of transitions have been documented

[3] [18] since then.

The dynamical mechanisms of these transitions are causing 1) amplification of the

global shear flow [13] [5] [10] and 2) suppression of turbulence by the shearing of the

flow [2]. The mechanism for the transition is then a flow shear dynamo instability

that amplifies the shear flow through the Reynolds stress term. The amplified sheared

flow reduces the turbulence fluctuations through the associated sheared electric field

turbulence suppression effect.
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Starting with Ref. [11], dynamical models have been constructed that incorporate

some of the basic mechanisms for these transitions. The derivation of these models is

based on MHD equations and using the radial structures and parameter dependences of

some typical plasma instabilities. Some of these models have been compared in detail

with experiment [7] for the case of the transition leading to the formation of the plasma

edge shear flow layer. In this case, the transition has similar characteristics to second

order transitions.

As the understanding of the transition dynamics increases, more details and

mechanisms have been included in the models [14] [4] making the dynamics of the

transition more complicated. An example is the inclusion of the zonal flows [12] in the

dynamical models.

The inclusion of the zonal flow in the dynamical models leads to different types

of transitions, as it will be discussed in this paper. The character of the transition

can be different from a second order transition. First order transitions and some forms

of dithering transitions are now possible within those dynamical models. This type of

transition may also be relevant in plasma experiments.

Some of the high confinement transitions show indications of hysteresis. This would

support an interpretation based on a first order transition model. Dithering transitions

have also been observed in the experiment, for instance the slow transition in the DIII-D

device [8], and it is interesting to find out under what conditions these transitions are

more likely.

In this paper, we analyze a simplified version of a dynamical transition model that

includes the evolution of the turbulence level, an averaged poloidal flow and zonal flows.

We explore the different types of transitions possible within this model. To this effect,

we have used computational topological tools to analyze the model and to determine

the number and topological properties of the attractor solutions.

The rest of the paper is organized as follows. In Section 2, we introduce the

dynamical model and discuss some of its basic properties. In Section 3, a numerical

search for attractors is presented for an ample range of values of the parameters.

The method used to do this exploration is also discussed. In Section 4, topological-

combinatorial calculations are done to support previous results. Finally, in Section 5

the conclusions are drawn from this research.

2. Dynamical model

Here, we consider a three-equation model combining the one proposed in Ref. [6] with

the model from Ref. [14]. Our interest is to understand the interaction of averaged

poloidal flow, zonal flows and turbulence. The equations are based on two dynamical

mechanism affecting turbulence: one is the flow generation through Reynolds stress and

the other is turbulence suppression by shear flow.

First we consider the turbulence fluctuations level on two–frequency region, the high

frequency, which is given by E ≡
〈
(ñ/n0)

2〉1/2, and the very low frequency associated
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with the shear of zonal flows, U ′ ≡
〈
(∂VZFθ/∂r)

2〉1/2. The angular brackets indicate

poloidal and toroidal angular averaging over the proper frequency range.

The basic mechanism for the emergence of the shear flow layer is the Reynolds stress.

The Reynolds stress term ∂
〈
ṼrṼθ

〉
/∂r can be interpreted as a measure of the symmetry

of the turbulent eddies. A sheared poloidal flow, V ′ ≡ d 〈Vθ〉 /dr, distorts those

eddies and gives a net contribution to the Reynolds stress, such contribution increases

the poloidal shear flow and drives an instability. This is a shear flow amplification

mechanism. In this case both the low and high frequency fluctuations contribute to the

Reynolds stress. So the Reynolds stress depends on the fluctuation levels and on the

gradient of the averaged poloidal flow shear, and we model this term as

∂2
〈
ṼrṼθ

〉
∂r2

= −α3E
2V ′ − α4U

′ 2V ′ (1)

Here, α3 and α4 are constant coefficients. This leads to an equation for the evolution of

the averaged poloidal flow of the form

dV ′

dt
= α3E

2V ′ + α4U
′ 2V ′ − µV ′ (2)

where µ is the flow damping term.

The gradient in large-scale flows, both the averaged and the zonal flows, shears

the turbulence eddies and tends to suppress the turbulence. In many of the dynamical

models used in the past, for instance [6], we have modeled this effect using a low shear

flow limit. That is, the linear growth was written as γ = γ0 − α2V
′ 2, where γ0 is the

growth rate in the absence of shear flow and α2 is a constant. However, for larger flows

is better to model this effect using Ref. [2], that is, the turbulence suppression will now

be written as

γ =
γ0

1 + α2V ′ 2 + α2U ′ 2 (3)

Therefore, the equation for the evolution of the turbulence fluctuation level has the

form
dE

dt
=

γ0
1 + α2V ′ 2 + α2U ′ 2E − α1E

2 (4)

where the term α1E
2 gives the nonlinear saturation level of the turbulence.

In the case of the zonal flows, they are not driven linearly, but the drive is the

Reynolds stress term. So in this case the Reynolds stress term and the suppression term

are combined in a single term as was done in Ref. [14] and the equation of evolution of

the zonal flow has the form
dU ′

dt
==

α3E
2U ′

1 + α2V ′ 2 + α5E
2V ′ − µU ′ (5)

By renormalizing the time and the three variables of this model we can reduce

the number of free parameters in the problem and finally have the following system of

equations:

dE

dt
=

(
1

1 + V ′ 2 + U ′ 2 − E
)
E (6)
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dV ′

dt
=
(
aE2 + cU ′ 2 − b

)
V ′ (7)

dU ′

dt
=

(
aE2

1 + V ′ 2 − b
)
U ′ + dE2V ′ (8)

These equations are written in dimensionless form. Here, a, b, c and d are constants

greater than or equal to zero. The parameter a measures the net effect of the Reynolds

and Maxwell stress tensor that causes the amplification of the shear poloidal flow

from turbulence fluctuations, the parameter c corresponds to the amplification of flow

mechanism by the zonal flows, and the parameter d to the amplification of zonal flows

by turbulence. The parameter b measures the flow damping. The first term in Eq. (6) is

the turbulence drive modified by the turbulence suppression due to averaged and zonal

flows.

Although in the dynamical evolution we have four parameters, when we look for

asymptotic solutions, corresponding to zero time derivative, we can reduce the number

of parameters to three. In what follows, we set the constant c to a fixed value and

we explore the possible asymptotic solutions for a range of values of the other three

parameters.

This model has several fixed points. In general, we cannot solve analytically the

fixed-point equations. We can do it for the particular case of d = 0. In this case, there

are four types of fixed-point solutions:

1) The trivial fixed point

E = V ′ = U ′ = 0 (9)

2) The low confinement fixed point

E = 1, V ′ = U ′ = 0 (10)

3) The high confinement fixed points with non-zero averaged shear flow, when b < a,

E =

√
b

a
, U ′ = 0, V ′ = ±

√√
a

b
− 1 (11)

4) The high confinement fixed points with non-zero zonal flow shear, when b < a,

E =

√
b

a
, V ′ = 0, U ′ = ±

√√
a

b
− 1 (12)

Therefore, for a given set of parameters, there may be up to six fixed points in the

high confinement regime, with a single bifurcation point for the transition from low to

high confinement at b = a. This structure is similar to all the other models we have

considered so far [7].

Having analytical solutions, it is easy to carry out the stability analysis based on

the eigenvalues of the linerized equations near the fixed-point solutions. The result of

this analysis shows: solutions 1) and 4) are always unstable. Solution 2) is stable and

therefore is an attractor for b > a, and solution 3) is stable and is an attractor for b < a.
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These solutions are giving the standard physics picture of the transition to a high

confinement regime. When the damping dominates over the Reynolds stress, b > a, we

have the low confinement solution without flow. Once the Reynolds stress dominates

over the damping, shear flow is amplified and the turbulence level is reduced. In this

case, we have the high confinement solution. The change of solution is continuous at

the bifurcation point, but the derivative is discontinuous, the characteristic behavior of

a second order transition.

At d = 0, the numerical results show that there are no limit cycle solutions. This

will be discussed further in the next sections. When d 6= 0, the situation changes and

becomes more complicated. As a starting point, we can only solve the equations for the

fixed points numerically.
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d = 0
U'

b

b = a

III

Figure 1. Fixed point solutions for U ′ as a function of b for a = 0.204, c = 0.714, and

d = 0.

To show some of the complexity emerging with d 6= 0, we can look at some of the

fixed-point solutions for U ′. In Fig. 1, we plotted the fixed-point solutions for U ′ as

a function of b. They are the same as the ones given by Eqs. (9) to (12). All stable

solutions are for U ′ = 0. The bifurcation point corresponds to b = a as indicated above

and we have two regions, the low confinement region, further called Region I, and the

high confinement region, called Region II. The transition from Region I to Region II is

a second order transition.

In Fig. 2, we show the numerically calculated fixed-point solutions for U ′ with

d = 0.5. We can see that a new bifurcation point for b > a has appeared. If there is

a transition at this bifurcation point, the transition will be a first order one. So the

nature of the transition may change, but there still remains the second bifurcation point

at b = a. After the first bifurcation, five possible fixed-point solutions exist.

The results shown in Fig. 2 only include fixed-point solutions. As we will see in

the next sections, limit cycle solutions may also exist, making the potential choices of
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Figure 2. Fixed point solutions for U ′ as a function of b for a = 0.204, c = 0.714, and

d = 0.5.

final states even more complicated. A systematic exploration of asymptotic solutions

is needed in order to understand the dynamical complexity of this system of equations.

This is done in the next sections.

3. Numerical exploration of the model

In order to explore the asymptotic behavior of solutions, we introduce an algorithmic

method based on numerical integration of ODEs, in which we scan wide ranges of

parameters and compute approximations of locally stable solutions, further called

attractors for short.

We consider the phase space spanned by the variables (E, V ′, U ′). We limit our

attention to the bounded subsetB := [−0.5, 1.5]×[−100, 100]×[−2, 2] of the phase space.

The subset B was chosen as a rough outer bound for all the attractors that we expect to

detect, based on some preliminary computations with much larger choices of B. We take

the uniform grid of 5×5×5 sample points from the box B′ := [0, 1]×[0, 10]×[−1, 1]. Note

that due to the symmetry (E, V ′, U ′) 7→ (E,−V ′,−U ′) in the equations, we take the

initial conditions with the non-negative second coordinate in order to avoid duplication

of the results.

For a fixed quadruple (a, b, c, d) of parameters, we construct an approximation of

all the attractors that could be reached from the sample points in the following way.

We integrate each of the sample points using the Runge-Kutta method. If the iterations

of the point remain in B for a certain number of steps then we plot a finite segment

of the trajectory starting at the last computed iterate of the point. We plot it using

3-dimensional pixels (a.k.a. voxels) at the resolution of 8192 × 8192 × 8192 in B. The

family of all the topologically disjoint compact subsets of B constructed in this way are
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considered to be numerical approximations of the attractors.

For each of the constructed sets, we compute its Betti numbers (β0, β1, β2) in order

to determine its basic topological properties. Here β0 counts the number of connected

components, β1 counts the number of tunnels (or through-holes), and β2 counts the

number of voids. In particular, the Betti numbers (1, 0, 0) suggest a fixed point, and

the Betti numbers (1, 1, 0) indicate a circle-shaped set, probably a periodic orbit for the

underlying ODE.

In order to obtain a comprehensive picture of the asymptotic dynamics over a wide

range of parameters, we fix c := 0.714 and d ∈ [0, 1], and we run the above-described

computations for all the endpoints (a, b) of a uniform grid of 1000× 1000 intervals into

which we subdivide the parameter space P := [0, 1]2 being scanned. These computations

were run at a computer cluster using the distributed computations scheme introduced

in Ref. [16].

In Fig. 3, we show the results obtained with this method for a few selected values

of d. Regions that differ by the number or type of attractors found are labeled and

discussed below. Since the most interesting part of the picture is for the values of

(a, b) ∈ [0, 0.4]2, we limit the presentation of results to these values of the parameters,

or otherwise some regions in the images become too small to be clearly distinguished.

The way in which the shape of the attracting cycle changes with varying b is illustrated

in Fig. 4.

In Region (a), where the damping dominates over the Reynolds-Maxwell terms,

there is only one fixed-point attractor, the low confinement fixed point without shear

flows. This fixed point becomes unstable, no longer an attractor, at the line a = b, which

is clearly visible in all the graphs in Fig. 3. This line limits Region (b), in which two

attractors are present, the low and the high confinement fixed points. The line separating

Regions (a) and (b) is the line of bifurcation points where the high confinement fixed

point emerges, and corresponds to the point separating Regions I and II in Fig. 2.

For values of a and b close to 1, Region (b) becomes very narrow and the emergence

of the high confinement fixed point and the destabilization of the low confinement fixed

point are nearly simultaneous. For these values of a and b the situation is similar to

the case d = 0 and the transition to the high confinement is similar to a second order

transition. In Region (c), there is only one attractor: the high confinement fixed point.

An interesting situation can be seen in Regions (d) and (e), where an attracting

limit cycle was found. This solution depends strongly on the value of d and does not

exist for d = 0. The limit cycle solution is practically independent of the value of a. As

d increases, the value of b at which the limit cycle appears also increases. In Region (d),

the limit cycle solution coexists with the low confinement fixed-point attractor.

As we move to Regions (f) and (g), the limit cycle solution is no longer found. It

is not clear if this solution no longer exists or there is a numerical problem in finding

it. In Fig. 4, we plotted the projection of the limit cycle solution on the (V ′, E) plane.

One can see that as the parameter b decreases, the cycle becomes larger and larger, and

also gets closer to the axes E = 0 and V ′ = 0. In this situation, small errors can make



Plasma confinement transitions 8

(a)

(b) (c)

(d) (e)
(f)

(g)

d = 0.25

a

b

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

(a)

(b)
(c)

(d) (e)

(f)
(g)

d = 0.5

a
b

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

(a)

(b) (c)

(d)
(e)

(f)

(g)

d = 0.75

a

b

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

(a) (b) (c)

(d)
(e)

(f)

(g)

d = 1

a

b

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Figure 3. Regions with different numbers or types of attractors found with the

numerical method discussed in Section 3, as a function of a and b for c = 0.714 and a

few selected values of d. The numbers of attractors found are as follows: Two in (b),

(d), one in (a), (c), (e), (f), none in (g). An attracting cycle was found in (d) and (e).

it impossible to identify the solution. The limit cycle solutions have a full 3D structure

in the phase space, as shown in Fig. 5.

In Region (f), there exists only one attractor, the low confinement fixed point. In

Region (g), no attractors were found.

Because of the structure of the solutions, several ways of transitioning to high

confinement are possible. Let us assume that both a and d are fixed, with d = 0.5, and

we are decreasing the parameter b. If a > 0.2, one may have a transition to the high

confinement fixed point as it emerges or when the low confinement fixed point becomes
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Figure 4. A projection to the (E, V ′) plane of the attracting cycle found for a = 0.204,

c = 0.714, and d = 0.5, at a few different values of b.
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Figure 5. Limit cycle solution in the phase space for a = 0.204, b = 0.16, c = 0.714,

and d = 0.5.
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unstable at b = a. However, for a < 0.2 it may transition first to the limit cycle before

going in the high confinement fixed point.

4. Topological-combinatorial computations

In order to conduct a more in-depth analysis of the dynamics, not only limited to stable

invariant sets but also taking the unstable ones into consideration, we analyze the global

dynamics of the system using the software introduced in [1].

The idea behind this approach is to decompose the phase space into recurrent

components (fixed points, periodic orbits, etc.) such that the connecting orbits between

them define a strict partial order, like in a gradient flow. This is achieved by computing

an outer approximation of a Morse decomposition at a prescribed resolution, consisting

of isolating neighborhoods of Morse sets, further called combinatorial Morse sets for

short. The interested reader is referred to [1] and to references therein for a detailed

explanation of this method and for the corresponding software.

The computational method is designed for maps, so we work with a time-

t discretization (for t = 2) of the flow induced by the system (6)-(8). We use

the CAPD software (http://capd.ii.uj.edu.pl/) for rigorous integration of the

flow, which is quite time-consuming and produces considerable overestimates, but

gives mathematically rigorous results. However, instead of constructing isolating

neighborhoods valid for entire subintervals of parameters (which is usually done when

using this method), we plug in individual parameter values in order to minimize the

overestimates.
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Figure 6. Volume of the combinatorial Morse sets, normalized to the volume of a

fixed bounding box in the phase space, as a function of b for a = 0.204, c = 0.714, and

d = 0.5. In this figure, continuous lines correspond to attractors.
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We have done many scans with one varying parameter in order to explore in more

detail the properties of this dynamical system. Here we show one example of these scans.

In Fig. 6, we plotted the volume of the combinatorial Morse sets found by the method

normalized to the volume of a fixed phase space bounding box in which we conducted

the computations. The results are for a = 0.204 and d = 0.5. In the corresponding plot

in Fig. 3, this scan is a vertical path for a = 0.204. One can see that this path goes

through Regions (a), (b), (c), (e) and (g), as indicated in the figure. This scan also

corresponds to the calculation of fixed points in Fig. 2. There, Region I corresponds to

Region (a), II to (b), and III includes (c), (e) and (g). In Fig. 6, attractors are indicated

by continuous lines.
0
.2

0
.6

1.0

3.5

0.2

0.6

E

V ′

U ′

Figure 7. Isolating neighborhoods of the unstable high confinement fixed point and

of the limit cycle constructed for b = 0.185 in the scan that is a basis for the data

illustrated in Fig. 6. (Brighter part of the neighborhood is closer to the viewer.)

As mentioned before, the calculation overestimates the size of the Morse sets. This

is particularly obvious in the transition from Region (c) to (e), where an attractor fixed

point solution, the high confinement fixed point, bifurcates in a fixed point and a limit

cycle. Fig. 7 shows combinatorial Morse sets containing the high confinement fixed

point and the limit cycle for b = 0.185, which is close to the bifurcation point. Fig. 8

shows the corresponding two combinatorial Morse sets for a somewhat lower value of b,

namely, b = 0.179.

The properties of each of the Morse sets are reflected by the Conley index [9], a

generalization of the Morse index of a nondegenerate critical point of a flow that carries

information about how the flow behaves near that set. For the computations we use the

homological version for discrete-time dynamical systems [15, 17]. Roughly speaking,

the Conley index of an invariant set consists of the relative homology groups of an
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Figure 8. Isolating neighborhoods of the unstable high confinement fixed point and

of the limit cycle constructed for b = 0.179 in the scan that is a basis for the data

illustrated in Fig. 6. (Brighter part of the neighborhood is closer to the viewer.)

isolating neighborhood of the invariant set and the part of its forward image that sticks

out of the isolating neighborhood, called its exit set, together with a certain class of

automorphisms on these groups that in our case are just the identity maps, since we

work with a time-t map of a flow.

Consider two extreme types of Morse sets. One is the case of an attractor. In this

case, the exit set is empty and the Conley index reflects the topological properties of the

isolating neighborhood of the attractor. The other extreme is a fixed point. In this case,

the Conley index reflects the topological properties of the exit set, and corresponds to

the dimension of the unstable manifold of the fixed point.

Let us now explain the meaning of the indices we encountered in the parameter

scan described above. The Conley index (H0, H1, H2, H3) for each of the different Morse

sets in Fig. 6 is listed in Table 4. The combinatorial Morse sets have been numbered

from the largest to the smallest volume.

H0 = Z suggests that the exit set is empty, i.e., the invariant set is an attractor. In

particular, (Z, 0, 0, 0) in the Conley index of an attracting fixed point, and (Z,Z, 0, 0)

suggest a limit cycle. The index (0,Z, 0, 0) suggests a fixed point with a 1-dimensional

unstable manifold, and the index (0, 0,Z, 0) — with a 2-dimensional unstable manifold.

5. Conclusions

In the dynamical model describing the coupling of turbulence and average flow, the

inclusion of zonal flows has increased significantly the complexity of the model and the

number of potential types of transitions.
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Region Morse set Conley index

(a) 1 (Z, 0, 0, 0)

(b) 1 (Z, 0, 0, 0)

2 (0,Z, 0, 0)

3 (Z, 0, 0, 0)

(c) 1 (Z, 0, 0, 0)

2 (0,Z, 0, 0)

(e) 1 (Z,Z, 0, 0)

2 (0, 0,Z, 0)

3 (0, 0,Z, 0)

4 (0,Z, 0, 0)

(g) 1 (0, 0,Z, 0)

2 (0, 0,Z, 0)

3 (0,Z, 0, 0)

Table 1. Conley indices of the combinatorial Morse sets indicated in Fig. 6, ordered

decreasingly by their volume.

The topological analysis of the Morse sets for this dynamical model has proven

to be very effective in the determination of the stability properties of non-fixed-point

asymptotic solutions for which the approach of linearizing the dynamical equations in

their neighborhood cannot be applied. This allowed us to deal with the complexity of

the model in a better way.

The systematic exploration of the asymptotic solutions of this three-equation model

has shown that depending on the relative effective contributions of the Reynolds-

Maxwell terms and of the damping term, the transition to a high confinement regime

may vary from a second order type transition to a first order transition or to dithering

transitions.

In the case of the stellarator plasma edge where the damping is large, the transition

leading to the formation of the shear flow layer is more similar to a second order

transition. For high temperature tokamaks, the H-mode type transition will be like a

first order transition, but dithering transitions may exist. A more detailed quantitative

determination of the Reynolds-Maxwell terms will be necessary in the determination of

which is the most likely one.
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