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Abstract

We discuss an algorithmic framework based on efficient graph algo-
rithms and algebraic-topological computational tools. The framework
is aimed at automatic computation of a database of global dynamics
of a given m-parameter semidynamical system with discrete time on
a bounded subset of the n-dimensional phase space. We introduce the
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mathematical background, which is based upon Conley’s topological
approach to dynamics, describe the algorithms for the analysis of the
dynamics using rectangular grids both in phase space and parameter
space, and show two sample applications.

Key words and phrases: dynamical system, Morse decomposition, Conley
index, grid decomposition, graph algorithms, rigorous numerics

It is well established that multiparameter nonlinear dynamical systems
exhibit extremely complex behavior. For many applications, especially mul-
tiscale problems or in settings in which precise measurements are difficult,
an understanding of coarse but robust structures that exist over large ranges
of parameter values is of greater importance than a detailed understanding
of the fine structure. With this in mind we discuss a new mathematical and
computational framework for the analysis of the global dynamics of multipa-
rameter nonlinear systems. Our approach is based on a finite combinatorial
approximation of phase space, parameter space and the nonlinear dynamics.
This is used to obtain a description of the global dynamics in terms of acyclic
directed graphs called Morse graphs. A rigorous understanding of the dy-
namics is obtained using the Conley index, an algebraic topological invariant.
The resulting information is finite and presented in the form of graphs and
algebraic invariants and thus can be easily queried. For this reason we view
our procedure as producing a database for the global nonlinear dynamics for
a parameterized nonlinear system. We include a discussion concerning the
computational complexity of our approach along with two simple illustrative
examples.

1 Introduction

Physical models of evolutionary processes are typically framed in terms of
continuous state spaces, parameter spaces and time. Understanding the ex-
istence, structure and bifurcation of invariant sets often forms the focal point
for the qualitative study of these systems. However, the theoretical work of
the last century makes clear that invariant sets can possess structure on all
spatial and temporal scales and furthermore that these structures can vary
dramatically over parameter sets which can be as complicated as Cantor sets
of positive measure.

These results need to be contrasted with available methods of analysis,
the ability to make measurements, and the derivation of models. In the
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context of applications the focus is often on understanding the dynamics
of a particular parameterized family of nonlinear systems. Because of the
nonlinearity, typically this analysis is heavily dependent on performing and
interpreting numerical simulations. Furthermore, these results are often com-
pared against experimental data which itself is limited to finite measurements
that contain errors and are of limited precision. Finally, many mathemati-
cal models, especially those arising from multiscale systems, are heuristic in
nature; that is, the nonlinearities are not derived from first principle, but
rather through a series of approximations. This implies that the exact values
produced by the model at particular parameter values cannot be expected
to and are not intended to exactly match those of the physical system. In
addition, there are many instances of models for which crucial parameter
values are unknown with bounds that range over many orders of magnitude.

This gap between the potentially infinite complexity of invariant sets and
the crude tools of analysis and measurement suggests that an alternative
perspective in describing the global properties of multiparameter families of
nonlinear dynamical systems may be of use. In this paper we provide a
review of our attempts to develop such a new perspective with a focus on
the computational aspects of the approach.

To keep technicalities to a minimum, we consider a multiparameter dy-
namical system given in the form of a continuous map

f : Rn × Rm → Rn

(x, z) 7→ fz(x) := f(x, z) (1)

where Rn is the phase space and Rm is the parameter space. However, it
should be noted that this is not a serious restriction. Techniques that are
analogous to those described in this paper have been successfully employed to
study the dynamics of ordinary differential equations,[18] partial differential
equations,[5] infinite dimensional maps,[4] fast-slow systems[7] and time series
analysis.[16] Let X ⊂ Rn be a compact subset of phase space that contains
the dynamics of interest and let Z ⊂ Rm be a compact subset of parameter
space which contains the set of physically relevant parameters. Our goal
is to provide a mathematically rigorous description of the global dynamics
restricted to X for all parameter values in Z.

Recall that for a given parameter value z ∈ Z, Sz ⊂ X is an invariant set
under fz if fz(Sz) = Sz. Traditionally, invariant sets are the focal point for
dynamical systems. In the approach we present here, they play a secondary
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role. Instead, we focus on isolating neighborhoods; these are compact sets
N ⊂ X such that

Inv(N, fz) ⊂ int(N)

where Inv(N, fz) denotes the maximal invariant set contained in N and
int(N) denotes the interior of N . Simple arguments based on continuity
show that if N is an isolating neighborhood for fz, then it is an isolating
neighborhood for fz′ for all z′ sufficiently close to z. An invariant set that is
the maximal invariant set in an isolating neighborhood is called an isolated
invariant set. Given an isolating neighborhood, information about the iso-
lated invariant set can be extracted using the Conley index which is discussed
in greater detail in Sections 2.3 and 2.4. For the moment it is sufficient to
make three remarks.

N1 One can associate a Conley index to any isolating neighborhood.

N2 If N and N ′ are isolating neighborhoods and Inv(N, fz) = Inv(N ′, fz),
then they have the same Conley index.

N3 If N is an isolating neighborhood for all z in a path connected subset
of Z, then the Conley index associated with N is the same for all fz.

For justification of these remarks and further information about the Conley
index see Ref. [17]. The theme of this work is that isolating neighborhoods
are relatively easy to identify, their Conley indices can be computed, and
thus we can obtain information about isolated invariant sets. N2 suggests
that this information is relatively insensitive to the numerical approximations
used to identify the isolating neighborhood. Furthermore, N3 implies that
the dynamical information extracted using the Conley index is robust with
respect to perturbations in parameter values.

2 Mathematical Framework

Because we are interested in structures which are invariant with respect to
perturbations in parameter space, it is convenient to consider the parame-
terized dynamical system

F : Rn × Rm → Rn × Rm

(x, z) 7→ (fz(x), z) (2)
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Given Z ⊂ Rm, we denote the restriction of F to Rm × Z by FZ : Rn × Z →
Rn × Z.

2.1 Approximating Dynamics

We can only perform a finite number of calculations, thus we need to com-
binatorialize phase space, parameter space, and the map that generates the
dynamics. The discretization of phase space and parameter space is done us-
ing the concept of a grid.[20] This consists of a finite collection X of nonempty,
compact subsets of X with the following properties:

(a) X =
⋃
ξ∈X ξ;

(b) ξ = cl(int(ξ)) for all ξ ∈ X ;

(c) ξ ∩ int(ξ′) = ∅ for all ξ 6= ξ′.

The diameter of a grid X is defined by

diam(X ) = sup
ξ∈X

diam(ξ).

As shown in Ref. [12], any compact metric space admits a grid of arbitrarily
small diameter. For A ⊂ X , the set

⋃
ξ∈A ξ ⊂ X is denoted by |A|.

For the sake of simplicity, in this paper we will only consider grids with
grid elements in the form of cubes or simplices. With this in mind, we restrict
the regions of phase space X ⊂ Rn and parameter space Z ⊂ Rm to be sets
that can be represented by cubical or simplicial grids X and Z, respectively.

To discretize the dynamics, we make use of a combinatorial multivalued
map F : X −→→X which assigns to each element of a grid ξ ∈ X a subset (pos-
sibly empty) F(ξ) of X . With regard to the algorithms that are employed in
the analysis of the dynamics, it is important to observe that a combinatorial
multivalued map is equivalent to a finite directed graph with vertices X and
directed edges (ξ, ξ′) whenever ξ′ ∈ F(ξ). With this in mind, we will refer to
F as a multivalued map or a directed graph, whichever is more convenient
or intuitive given the situation.

To understand the relationship between multivalued maps and nonlinear
dynamics, consider a continuous function f : Rn → Rn and a compact subset
X ⊂ Rn. Let X be a grid forX. A combinatorial multivalued map F : X −→→X
is an outer approximation of f , if

f(ξ) ⊂ int(|F(ξ)|) for all ξ ∈ X . (3)
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Given a grid X , the minimal outer approximation of f is given by

F̃(ξ) := {ξ′ | ξ′ ∩ f(ξ) 6= ∅}

and any other outer approximation F of f satisfies F̃(ξ) ⊂ F(ξ) for all
ξ ∈ X .[12]

An important observation is the fact that if F̃ is a minimal outer approx-
imation of f , then there exists δ > 0 such that if ‖g(x) − f(x)‖ < δ for all

x ∈ X then F̃ is an outer approximation of g. Another outer approxima-
tion F for f , which is not minimal, will in general allow for a larger δ. In
this sense, grids and outer approximations provide a robust approximation
of dynamics.

From the computational perspective, determining the minimal outer ap-
proximation is typically too expensive. In general, the best that can be done
is to compute an approximation of f(ξ) along with an error bound ε which
may or may not be small. With this information one can construct an outer
approximation that satisfies the following condition

{ξ′ ∈ X | ξ′ ∩Bε(f(ξ)) 6= ∅} ⊂ F(ξ).

The focus of this paper is on parameterized dynamical systems (2) for
which we have chosen grids X and Z for X and Z, the regions of inter-
est in phase space and parameter space, respectively. For each ζ ∈ Z, let
Fζ : X −→→X be an outer approximation of Fζ : Rn× ζ → Rn× ζ restricted to
the grid X × ζ := {ξ × ζ | ξ ∈ X}. By definition, this implies that

f(ξ, ζ) ⊂ int (|Fζ(ξ)|) for all ξ ∈ X

To understand how Fζ acts as an approximation of the underlying dynam-
ics induced by (1), we state the following proposition which follows directly
from the definition of an outer approximation.

Proposition 2.1. Let Fζ be an outer approximation for Fζ. Consider any
x ∈ ξ and any ordered sequence of parameter values (z1, z2, . . . , zT ) where
{zi ∈ ζ | i = 1, . . . , T}. Define

xi+1 := fzi(xi)

where x0 = x and choose ξi ∈ X such that xi ∈ ξi. Then the ordered sequence
(ξ, ξ1, . . . , ξT+1) is a path in the directed graph Fζ.
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2.2 Extracting Nonrecurrent Dynamics

Assume that the grids X , Z are chosen and for a fixed ζ ∈ Z an outer
approximation Fζ : X −→→X has been computed. The first step in using our
approximation scheme to understand the dynamics generated by (1) is to
identify the nonrecurrent dynamics.

Given the directed graph Fζ and N ⊂ X , the associated subgraph is the
directed graph Fζ |N : N −→→N consisting of the vertices {ξ ∈ N} and edges
{(ξ, ξ′) | ξ, ξ′ ∈ N , ξ′ ∈ Fζ(ξ)}. A directed graph is invariant if each vertex
is both the head of at least one edge and the tail of at least one edge.

Proposition 2.2. Let Sζ ⊂ X be the maximal invariant subgraph of Fζ.
Then

Inv(X, fz) ⊂ |Sζ |
for all z ∈ ζ.

The proof follows directly from Proposition 2.1. A consequence of Propo-
sition 2.2 is that we have identified the portion of phase space on which
the asymptotic dynamics takes place for all parameter values z ∈ ζ. The
next step is to identify the relevant dynamical structures which, likewise, are
invariant for all z ∈ ζ.

Given the directed graph Fζ , two elements ξ, ξ′ ∈ X belong to the same
strongly connected path component if there exist nontrivial paths from ξ to ξ′

and ξ′ to ξ.

Definition 2.3. Given a directed graph Fζ , the collection of all strongly
connected path components

{Mζ(p) ⊂ X | p ∈ Pζ}

is the Morse decomposition of Fζ . The individual strongly connected path
components are called Morse sets.

The proof of the following proposition follows from direct applications of
the definition of strongly connected path components, the definition of Sζ
and Proposition 2.1.

Proposition 2.4. Consider an outer approximation Fζ : X −→→X of Fζ with
maximal invariant subgraph generated by Sζ. Then:

1. Mζ(p) ⊂ Sζ for all p ∈ Pζ.
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2. If p 6= q, then Mζ(p) ∩Mζ(q) = ∅

3. If ξ ∈ Sζ \
⋃
p∈PζMζ(p), then there exists p, q ∈ Pζ and a path in Fζ

that begins in M(p), passes through ξ, and ends in M(q). Note: If
such a path exists for some p, q ∈ Pζ then we write q <ζ p.

4. If x ∈ ξ and ξ ∈ Sζ \
⋃
p∈PζMζ(p), then x is not a recurrent point of

fz restricted to X for all z ∈ ζ.

5. Under the relationship ≤ζ, defined above, Pζ is a partially ordered set.

Proposition 2.5 (See Theorem 4.1 in Ref. [12]). Let {Mζ(p) ⊂ X | p ∈ Pζ}
be the Morse decomposition for the outer approximation Fζ : X −→→X of Fζ.
Then for all p ∈ Pζ, |Mζ(p)| is an isolating neighborhood for fz for all z ∈ ζ.

Recall that given a partially ordered set (P,≤), we say that q covers p if
from the relation q ≤ r ≤ p it follows that either q = r or r = p.

Definition 2.6. The Morse graph MGζ of Fζ is the acyclic directed graph
with nodes consisting of the Morse sets and directed edgesMζ(p)→Mζ(q)
if and only if q covers p in (P,≤).

2.3 Identifying Recurrent Dynamics

For each grid element ζ in parameter space, the associated Morse graph
MGζ provides rigorous information about the nonrecurrent dynamics and
potential information about the recurrent dynamics that is valid over all
parameter values in |ζ| ⊂ Z. In particular, if recurrent dynamics occurs
for some parameter value then it must occur within a region determined
by a Morse set. We now describe the Conley index, which is an algebraic
topological tool that can provide information about the recurrent dynamics.

We begin our description by considering an arbitrary continuous map
g : Y → Y defined on a locally compact metric space. Consider a pair of
compact sets P = (P1, P0) with P0 ⊂ P1. Let (P1/P0, [P0]) denote the pointed
topological space where P1/P0 is the quotient space obtained by collapsing
P0 to a single point denoted by [P0]. Let gP : (P1/P0, [P0]) → (P1/P0, [P0])
be defined by

gP ([x]) =

{
f(x) if x, f(x) ∈ P1 \ P0;

[P0] otherwise
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Definition 2.7. A pair of compact sets P = (P1, P0) is an index pair for g if

1. gP is continuous, and

2. cl(P1 \ P0) is an isolating neighborhood under g.

The induced map gP is called an index map.

Because we have assumed that our grids are defined in terms of cubes
or simplices, we obtain the following result which implies that we can find
index pairs associated with each of the regions that contain the potentialy
recurrent dynamics.

Proposition 2.8. Let {Mζ(p) ⊂ X | p ∈ Pζ} be the Morse decomposition
for the outer approximation Fζ : X −→→X of Fζ. Assume |Sζ | ⊂ int(X). Let
P = (P1, P0) be defined by

P1 := |Fζ (Mζ(p))| and P0 := |Fζ (Mζ(p)) \Mζ(p)|

Then for all z ∈ ζ, P is an index pair for fz.

Given an index pair P for g, the continuity of gP implies that the following
family of induced maps on homology is well defined

gP,k : Hk(P1/P0, [P0])→ Hk(P1/P0, [P0]), k = 0, 1, 2, . . .

This is a representative of the Conley index (which is defined later) for the
isolating neighborhood cl(P1 \P0) under g. Computations can be done using
rational coefficients in which case

gP,k : Hk(P1/P0, [P0],Q)→ Hk(P1/P0, [P0],Q), k = 0, 1, 2, . . .

is a linear map on a vector space, and the nonzero eigenvalues σ̄k of gP,k can
be used as a representative of the Conley index.

The most fundamental result associated with the Conley index is the
following

Theorem 2.9 (See Ref. [17]). Let gP,k : Hk(P1/P0, [P0]) → Hk(P1/P0, [P0])
be induced by index maps. If for some k ∈ 0, 1, 2, . . ., gP,k is not nilpotent,
then

Inv(cl(P1 \ P0), g) 6= ∅.
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The following theorem provides a simple example of how the Conley index
can be used to extract more detailed information about the dynamics that
is robust with respect to perturbations in parameter space

Theorem 2.10. Let Mζ(p) be a Morse set for the outer approximation
Fζ : X −→→X of Fζ. Then

σ̄0 = ∅ or σ̄0 =
{
e2πi

k
T | k = 0, . . . , T − 1

}
for some T > 0.

In the latter case,

|Mζ(p)| =
T−1⋃
i=0

Ni

where {Ni | i = 0, . . . , T − 1} are mutually disjoint compact sets with the
property that

Fζ(Ni) ⊂ Ni+1, i = 0, . . . , T − 1

and
Fζ(NT−1) ⊂ N0.

In particular, given any sequence of parameter values {zj | j = 0, 1, 2, . . .} ⊂
ζ, any x0 ∈ N0 and xj+1 := fzj(xj), we have

xj+1 ∈ Nk where k = j + 1 mod T .

The proof of this theorem follows from Ref. [2, Proposition 5.8] and Propo-
sition 2.1.

Definition 2.11. The Conley-Morse graph CMGζ of Fζ consists of the Morse
graph MGζ of Fζ along with the Conley index associated with each Morse
set Mζ(p), p ∈ Pζ .

It is important to note that given an index pair as in Proposition 2.8,
the induced map on homology of an associated index map can be computed
using Fζ .[11, 19, 9]

2.4 Classifying Dynamics over Parameter Space

The discussion in Sections 2.1 and 2.3 is restricted to the dynamics of Fζ
where ζ ∈ Z is a single grid element in parameter space. Since the results
are valid for every ζ ∈ Z, this provides a rigorous description of the dynamics
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for every point z ∈ Z. What remains to be discussed is how the dynamics
over different grid points ζ, ζ ′ ∈ Z are related. We begin by defining a
relationship between the Morse sets.

Definition 2.12. Let ζ, ζ ′ ∈ Z such that ζ ∩ ζ ′ 6= ∅. The clutching graph
I(ζ, ζ ′) is the bipartite graph with vertices Pζ ∪ Pζ′ and with edges

(p, q) ∈ Pζ × Pζ′ if and only if Mζ(p) ∩Mζ′(q) 6= ∅.

Proposition 2.13. Assume there is a unique edge (p, q) in the clutching
graph I(ζ, ζ ′) that has either p or q as its endpoint. Then the Conley index
of |Mζ(p)| under Fζ is the same as the Conley index of |Mζ′(q)| under Fζ′.

Proof. Let z ∈ ζ ∩ ζ ′. By Proposition 2.5, |Mζ(p)| and |Mζ′(q)| are isolating
neighborhoods. Let Sz := Inv(|Mζ(p)| , fz) and S ′z := Inv(|Mζ′(q)| , fz).
Observe that it is sufficient to show that Sz = S ′z, since the result then
follows from N2.

With this in mind, suppose Sz 6= S ′z. Without loss of generality we can
assume that there exists x ∈ Sz \ S ′z. This implies that there is a grid
element ξ ∈ X such that x ∈ ξ ∈Mζ(p)\Mζ′(q). Since x ∈ Sz, ξ belongs to
a strongly connected path component and hence belongs toMζ′(r) for some
r ∈ Pζ′ where r 6= q. This implies that the clutching graph I(ζ, ζ ′) contains
the edge (p, r), contradicting the uniqueness of the edges with endpoint p.

The key step in the proof of Proposition 2.13 is N2. Observe that the
validity of N2 is not obvious. In general, the index pairs P = (P1, P0) defined
by

P1 := |Fζ (Mζ(p))| and P0 := |Fζ (Mζ(p)) \Mζ(p)|

and P ′ = (P ′1, P
′
0) defined by

P ′1 := |Fζ′ (Mζ′(q))| and P ′0 := |Fζ′ (Mζ′(q)) \Mζ′(q)|

will be different and hence the induced index maps

fP,k : Hk(P1/P0, [P0])→ Hk(P1/P0, [P0])

and
fP ′,k : Hk(P

′
1/P

′
0, [P

′
0])→ Hk(P

′
1/P

′
0, [P

′
0])
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will provide different representations of the Conley index. Thus to explain
N2 requires a discussion of the equivalence classes used to define the Conley
index. This is best done in a fairly general setting, so consider two functions

a : V → V and b : W → W

where V and W are both either finitely generated abelian groups or finite
dimensional vector spaces, and a and b are group homomorphisms or linear
maps.

Definition 2.14. The maps a and b are shift equivalent if there exist mor-
phisms

r : V → W and s : W → V

such that
b ◦ r = r ◦ a and s ◦ b = a ◦ s

and a positive integer n such that

s ◦ r = an and r ◦ s = bn.

From Ref. [6] it follows that if fP,k and fP ′,k are constructed as above,
then fP,k and fP ′,k are shift equivalent. More generally, when we indicate
that two Conley indices agree then we mean that the representative index
maps are shift equivalent.

Proposition 2.13 motivates the following definition.

Definition 2.15. Fix grids X and Z and outer approximations Fζ : X −→→X
for all ζ ∈ Z. Two Morse sets Mζ(p) and Mζ′(p

′) belong to the same Morse
continuation class if there exists a sequence of grid elements {ζi | i = 0, . . . , I}
with ζ0 = ζ, ζI = ζ ′ and indexing elements {pi ∈ Pζi | i = 0, . . . , I} with
p0 = p, pI = p′ such that for all i = 0, . . . , I − 1 there exists a unique edge
(pi, pi+1) in the clutching graph I(ζi, ζi+1) that has either pi or pi+1 as its
endpoint.

N3 combined with Proposition 2.13 leads to the following result.

Corollary 2.16. Let Mζ(p) and Mζ′(p
′) belong to the same continuation

class. Let z ∈ ζ and z′ ∈ ζ ′. Then the Conley index of |Mζ(p)| under fz is
the same as the Conley index of |Mζ′(p

′)| under fz′.
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Remark 2.17. It is possible that Mζ(p) and Mζ(q), q, p ∈ Pζ , belong to
the same continuation class even if p 6= q.

Extending the idea of continuation classes to Morse graphs is slightly
more subtle. Assume that the clutching graph I(ζ, ζ ′) has the property that
each node is the endpoint of exactly one edge. This defines a bijection

bζ,ζ′ : Pζ → Pζ′

p 7→ q (4)

if (p, q) is an edge of I(ζ, ζ ′).

Definition 2.18. Fix grids X and Z and outer approximations Fζ : X −→→X
for all ζ ∈ Z. Two Conley-Morse graphs CMGζ and CMGζ′ belong to the
same Conley-Morse graph continuation class if there exists a sequence of
grid elements {ζi | i = 0, . . . , I} with ζ0 = ζ, ζI = ζ ′ and indexing elements
{pi ∈ Pζi | i = 0, . . . , I} with p0 = p, pI = p′ such that for all i = 0, . . . , I− 1
the bijection

bζi,ζi+1
: (Pζi ,≤ζi)→ (Pζi+1

,≤ζi+1
)

is a directed graph isomorphism

Remark 2.19. To each Conley-Morse graph continuation class, we associate
three distinct types of information:

• The Morse graph, which provides information about the structure of
the non-recurrent dynamics.

• The Conley indices of the Morse sets, which provide information about
the structure of the recurrent dynamics.

• The set of parameter grid elements whose Conley-Morse graphs belong
to the Conley-Morse continuation class. This provides a lower bound
on the set of parameter values at which the identified recurrent and
non-recurrent dynamics must occur. We use the number of parameter
grid elements to measure the size of the continuation class.

Remark 2.20. The information about the dynamics provided by our ap-
proach can be viewed as a database of dynamics for the multiparameter non-
linear dynamical system (1) restricted to the region of phase space X ⊂ Rn

and parameter space Z ⊂ Rm where the minimal levels of resolution are
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determined by the diameters of the grids X and Z. In particular, we can
construct the continuation graph; that is, a graph whose nodes consist of
the Conley-Morse graph continuation classes and whose edges consist of the
clutching graph information between representative Conley-Morse graphs.
This type of information is exhibited in Figure 2.4 for the overcompensatory
Leslie model[22] [

x
y

]
7→
[
x(θ1x+ θ2y)e−0.1(x+y)

0.7x

]
(5)

To limit the information to a comprehensible amount, the upper left corner
indicates the continuation graph associated with the 26 largest Conley-Morse
graph continuation classes.

2.5 Grid Refinements and Bifurcations

The accuracy of computations is affected by a variety of factors, including the
method for construction of combinatorial multivalued maps, but the size of
the grid in phase space and parameter space is the most prominent factor that
may affect the structure of the constructed Conley-Morse graphs. In general,
at finer grids some Morse sets may be split and the finer structure of dynamics
in their regions may be revealed. As a consequence, the complexity of the
Conley-Morse graphs depends on the grid size. Namely, if the parameter
value is fixed, the Conley-Morse graph on a finer grid may be larger than
that on a coarser grid, as long as Morse sets with non-trivial Conley index are
concerned. To be more precise, recall that the Conley-Morse graph and its
subgraph consisting of Morse sets with non-trivial Conley index are posets
(partially-ordered sets). The poset of the subgraph on a finer grid is projected
onto the poset on a coarser grid by a map naturally induced by the grid
refinement.

The same relation holds true for parameter grid refinement. Namely, for
a parameter grid element and one of its refined parameter grid elements,
the corresponding poset of the subgraph on a finer parameter grid element
is projected onto the poset on a coarser parameter grid element by a map
naturally induced by the parameter inclusion.

One of the problems that must be dealt with in the construction of
Conley-Morse graphs is the appearance of Morse sets with trivial Conley
index. Because of the trivial index, one cannot prove that their invariant
part is nonempty, and in fact, for some systems, hundreds or thousands of

14



Figure 1: Database information concerning dynamics for the overcompen-
satory Leslie model (5). (Upper Left) Continuation Graph: Each node corre-
sponds to a Conley-Morse graph equivalence class. Each edge corresponds to
a clutching graph between Conley-Morse graphs. (Upper Right) Parameter
space divided into regions corresponding to Conley-Morse graph equivalence
classes. Color coding of parameter space matches the color coding of the
nodes in the continuation graph. (Lower Right) Clutching graph between
two Conley-Morse graphs. This clutching graph corresponds to the high-
lighted (red) edge in the continuation graph. The nodes of the Conley-Morse
graphs have two types of labels [∗] and (∗). The square brackets indicate the
Morse continuation class associated with the node. The parenthesis indicate
the level of homology on which the Conley index is non trivial. (Lower Left)
Conley indices of the Morse sets. The polynomial is the invariant factor for
the shift equivalence class of the linear map on homology using Z2 coefficients
induced by the index map.
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such “spurious” sets isolating the empty set may appear. A powerful method
for detecting such Morse sets in order to prune them and reduce the Morse
graphs is to refine the grid in such a set and check for the emptyness of its
invariant part at the higher resolution.[2] Therefore, if a Morse set does not
appear to have the empty invariant part after several refinements then this
is an indication of the presence of non-trivial dynamics and a possibility of
bifurcation. See Ref. [1] for an analysis of the saddle-node bifurcation from
this point of view.

3 Algorithms

The mathematical framework proposed in Section 2 is combinatorial in na-
ture and the presented motivation was the need for a robust description of
dynamics with respect to both parameters and measurement. In this section
we change the perspective and observe that a combinatorial theory raises
hopes that the dynamical structures being extracted are computable. Of
course, the practicality of these computations depends upon the availability,
development and implementation of efficient algorithms.

3.1 Grid Element Container and Combinatorial Map
Structure

As is indicated in Section 2.1 we use grids and multivalued maps to trans-
late between the continuous nonlinear world we are interested in and the
combinatorial world we may compute in. This suggests the need for a pro-
grammatic interface to construct and interact with grids. In our approach
the grid elements themselves are identified with integers. The geometric ob-
jects of interest may be problem dependent and hence take the form of type
Geo. Basic requirements are that the grid must provide methods for us to
translate back and forth, as well as provide us access to a complete list of
grid elements. Furthermore we need to be able to adaptively subdivide these
grids. This leads to the following constructs.

1. iterator: A device used to loop through all grid elements in the grid
X .

2. geometry: A method for producing the Geo object associated with a
grid element.
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3. cover: A method for producing a set of grid elements which are known
to provide an outer cover of a Geo object.

4. subdivide: A method to change the structure of the grid by subdivid-
ing a grid element into smaller pieces.

5. complex: A method to produce a cell complex out of a collection of
grid elements.

For the computations presented in this paper we use a grid based on
multiscale cubical structures and deal exclusively with Geo objects which
are rectangular prisms. This can be generalized without breaking the above
interface.

Our representation of the dynamics is based on multivalued maps which
are outer approximations. Thus cover produces enough grid elements to form
an outer cover of the geometric region provided.

To capture the dynamics of Fζ : Rn × |ζ| for a given ζ ∈ Z requires a
problem dependent computer routine Fζ that takes as input a Geo object A
(think rectangular prism) and outputs a Geo object B, with the property
that any point Fζ(A, |ζ|) ⊂ B. With the routine Fζ the multivalued map can
be obtain by simple composition

Fζ = cover ◦ Fζ ◦ geometry.

That is, we begin with a grid element, query the grid to recover a Geo object,
apply the user-defined map function to produce another Geo object, and then
cover this output with grid elements.

The grid provides a covering of the space in terms of topologically simple
objects. However, to compute homology requires the finer structure of a cell
complex. For simple grids consisting of cubes and simplices, the action of
complex is classical. The use of more sophisticated grids requires the user to
construct the appropriate complex operations.

3.2 Graph Theory Algorithms

For each ζ ∈ Z, the Morse graph MGζ is defined in terms of the multivalued
map Fζ and provides a decomposition of the global dynamics. There are
two essential computations associated with the construction of MGζ from
Fζ : identification of the strongly connected path components and the partial
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order between these components which we refer to as reachability. Both
memory and run time are critical issues that need to be addressed.

We begin by remarking that the the computations are done in an adaptive
manner; working with a uniform cubical grid decomposition of X ⊂ Rn

is prohibitively expensive in both time and memory. A description of an
adaptive procedure is presented in Ref. [2].

Tarjan’s Algorithm is a standard procedure for computing strongly con-
nected components.[3] It proceeds by executing a depth first search and keep-
ing track of so-called low-link information. Tarjan’s algorithm requires time
linear in the number of edges of the graph. It is important to note that
storing Fζ can be memory intensive. The number of vertices is related to the
size and dimension of Inv(X,Fζ) and the number of edges associated with
each vertex is determined by the product of the eigenvalues of Df with mag-
nitude greater than one. An approach to circumventing this problem is to
avoid storing Fζ and instead using Fζ , recompute Fζ(ξ) whenever necessary.
Naively running Tarjan’s algorithm with this approach leads to recomputing
Fζ(ξ) many times for each grid element. Since these geometric computations
can be quite expensive (especially in the context of differential equations),
this is unacceptable. We remark that we have implemented a modified ver-
sion of Tarjan’s algorithm such that we do not store the entirety of Fζ in
memory and yet only have to evaluate Fζ(ξ) once for each ξ ∈ X .[8] More
precisely, there exists a strongly connected components algorithm which re-
quire O(V ) space, O(E) time, and needs to query each vertex for its set of
out-edges exactly once.

Turning to the issue of computing reachability, there are no known linear
time algorithms. The reason for this is easy to see: consider concatenating
two bipartite graphs so we obtain three layers. The reachability relation from
the first layer to the third layer can be found by multiplying two matrices to-
gether. Conversely, a boolean matrix multiplication problem can be recast as
a graph reachability problem in this fashion. Hence a reachability algorithm
linear in the number of edges would correspond to an O(n2) boolean matrix
multiplication algorithm for n × n matrices. The naive method of boolean
matrix multiplication has complexity O(n3), however. While subcubic mul-
tiplication methods are indeed known, the best exponent on matrix multipli-
cation doesn’t correspond to a practical algorithm. However, it is conceivable
that some very nice algorithm does exist, and there exists a corresponding
reachability algorithm that can be executed in worst case O(E logE) time.
This would require a major breakthrough, so we content ourselves with an
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O(EV ) algorithm.
Since we are not interested in the entire reachability relation, but only

the reachability relation between Morse sets, the problem becomes somewhat
easier. Because current computers deal in 64-bit words, it is possible to
establish the reachability relation for up to 64 Morse sets in a single pass of
the edges (which we process in topological order). If there are more than 64,
we require multiple sweeps. Since in practice we have a low number of Morse
sets, we effectively find the reachability relation in linear time.

3.3 Conley Index Algorithms

The are two issues associated with the Conley index. First, we need to be
able to compute the relative map on homology of an index pair. Second, we
need to be able to identify shift equivalence classes on homology induced by
the index maps.

There are two essential challenges to computing the relative homology
of maps from the combinatorial data contained in Fζ . The first is to iden-
tify chain maps which carry the appropriate information. Our approach is to
consider the graph Γ of the multivalued map Fζ . Under reasonably weak con-
ditions the homology of Γ is isomorphic to the homology of the domain and
the projection maps πd and πr from Γ to the domain and range, respectively,
are chain maps.[9, 19] Thus, in this setting

Fζ∗ := πr∗ ◦ π−1d∗

provides an appropriate map on homology.
The second challenge arises from the fact that the cell complex repre-

senting Γ can be quite large. Because of this, we have developed an algo-
rithm that can compute the induced map of homology of a relative map
F : (X,A)→ (Y,B) which finds cycles in the domain (X,A) and proceeds to
lift them into a corresponding cycle in (ΓX ,ΓA). This procedure only needs
to construct a single graph fiber at a time, and thus can have significantly
lower memory requirements.[9]

The computation of shift equivalence classes appears to be an open prob-
lem except in special cases. Fortunately one such special case is that of
vector spaces over finite fields. In this case it is possible to identify shift
equivalence class of a matrix A by computing the Smith Normal Form of
the matrix A− Ix. From this one acquires invariant factors and factors the
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largest power of x possible; if one is left with 1 the factor is discarded. What
remains characterizes the shift equivalence class.

3.4 Continuation Algorithms

As is indicated in Section 2.4 the concepts of continuation are based on the
existence of clutching graphs. Computationally, we are presented with two
Morse decompositions {Mζ(p) ⊂ X | p ∈ Pζ} and {Mζ(p

′) ⊂ X | p′ ∈ Pζ′}.
Let n be the number of grid elements in all the Morse sets of both Morse
decompositions. The following naive algorithm computes the clutching graph
in O(n2) time. Use an outer loop which loops through every grid element
in a Morse set in the first grid, and an inner loop that loops through the
grid elements of the Morse sets of the second grid. Whenever an intersection
is found, an edge in the clutching graph is forged. This naive algorithm,
though generally applicable, is woefully inefficient. In practice, we re-express
the Morse sets in one grid by covering them in the other. After this step,
what remains is to scan grid elements, which takes linear time. Thus the
complexity bottleneck is determined by how hard it is to cover a set of grid
elements from ∪p∈PζMζ(p) with grid elements from ∪p′∈Pζ′Mζ′(p), and vice
versa. This, in turn, depends on the details of the grid implementation. For
hierarchical tree-based multiscale cubical structures where the outer bounds
of the grid are the same, we obtain an O(n) algorithm.

Having determined the clutching graphs it is easy to identify the Morse
continuation classes and Morse Graph continuation classes via generating re-
lations. However, we require a data structure which takes these generating
equivalences as input and provide us with a representation of the equivalence
classes. This is a classical problem and hence we employ the disjoint set data
structure, also known as a union-find structure. This structure, when initial-
ized, regards some finite set of elements as each belonging to disjoint singleton
sets. By calling a union method, these sets may be unioned together until
the disjoint set data structure represents the partition associated with the
equivalence relation. (The find method is used to determing a representative
element of each disjoint set; so it can be used to determine if two elements are
equivalent). The union and find methods are not constant time, but rather
the time complexity is given by the inverse Ackermann function.[21] For all
practical purposes we may consider inverse Ackermann to be constant time,
as it grows extremely slowly. Given the union-find structure, what remains to
us is simply to produce a generating set of relations to learn the equivalence
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classes. For each generating equivalence, we call the union method.

3.5 Database Structure

The desired result of our computations is a database from which one can
extract useful information concerning the dynamics. This information takes
the form of a collection of records :

1. Parameter Record: Indicate a region of parameter space and give it
an index so it may be cross-referenced by other records.

2. Morse Record: Indicate the Morse graph associated to some param-
eter record.

3. Continuation Record: Indicate the clutching graph associated to
some indicated pair of parameter records.

4. Conley Record: Indicate the Conley index associated with some in-
dicated Morse set associated to some indicated Morse Record.

If we only have records of type (1)-(3), we call it a Morse Graph database.
If, on the other hand, we have all types of records, it is a Conley-Morse Graph
database. In our computations, we first produce a Morse Graph database, and
then process the continuation records using a union-find structure in order to
learn the Morse continuation classes. Then we choose a single representative
of that class, and compute the “Conley Record” associated with it. By
Corollary 2.16 the Conley index is constant on continuation classes of Morse
sets. Clearly, this is much more efficient than performing expensive Conley
Index computations to produce Conley Records for every Morse set of every
Morse Record.

3.6 Query Algorithms

Once we obtain the database structure, we make use of it via database queries.
Because the records make reference of each other, it is possible to make a
number of different queries. Examples include, but are not limited to:

1. Identify all parameter regions in the same Morse Graph continuation
class.
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2. Identify all Morse Graph continuation classes for which we have shown
multiple basins of attraction exist.

3. Identify all Morse Graph continuation classes which contain a Morse
set with a given Conley Index.

4 Applications

In order to demonstrate the potential of our approach, we present two appli-
cations of the computational framework introduced in the previous sections.

4.1 Three Age-Classes Overcompensatory Leslie Model

Consider the following three-age class overcompensatory Leslie population
model. 

x = (θ1x+ θ2y + θ3z)e−0.1(x+y+z)

y = 0.7x

z = 0.7y

(6)

The variables x, y, and z represent the age class populations in order of
ascending age. If one views this as a model of a plant population, then
the parameters 3 parameters θi, i = 1, 2, 3 can be interpreted as the seed
production rates of the different age classes. The exponential term represents
an overcrowding factor that depends on the adult population. This model
and it biological relevancy is discussed in greater detail in Ref. [22].

To set up the computations we choose the parameter region of interest:

Z := {(θ1, θ2, θ3) | 14.5 ≤ θ1 ≤ 30.5, 13.0 ≤ θ2 ≤ 37.0, 13.0 ≤ θ3 ≤ 37} ⊂ R3.

The parameter space grid Z is constructed by subdividing Z into 32 equal
sized intervals in each direction. This divides parameter space into 32768
three dimensional cubical cells. To speed up the computation, we choose to
compute for sets of parameter values that are represented by the edges in
this complex. Thus, there are a total of 104544 one dimensional parameter
boxes for which we produce a Conley Morse graph.

The compact region in phase space is given by

X := [0, 320.056]× [0, 224.040]× [0, 224.040] ⊂ [0,∞)3.
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It can be shown analytically that X is an isolating neighborhood for the
global attractor of (6) for all θ ∈ Z. Using an adaptive subdivision algorithm
similar to that of Ref. [2] the final grid in phase space consists of cubes
obtained by subdividing X into 212 equal sized intervals in each direction.
In general this produces Morse decompositions consisting of many Morse
sets most of which are spurious in the sense that the recurrence is due to
numerical error. To eliminate obvious spurious solutions the cubes in each
Morse set are once again subdivided up to 24 times in each direction and
recurrence within this regions is checked. If the recurrence disappears then
one can safely conclude that the associated region in phase space does not
contain recurrent dynamics. For a more detailed discussion of this step see
Ref. [2].

The computation based on the above mentioned inputs was run on 15
nodes of a cluster, using 3 processors per node. Each node had a minimum
of 8 GB of memory. The total computation time was 137 hours, of which
134 hours were needed to find the Morse graphs.

As is indicated in the Introduction an important impetus behind the
database is to be able to quickly and efficiently find interesting dynamics.
Given that this is a population model a natural question has to do with
the structure of attractors and/or the existence of multiple attractors as a
function of the parameter values.

Let us begin by considering the existence of multiple attractors. The
appropriate query is to ask for those nodes in the continuation graph for
which the associated Morse graphs contain more than one minimal node. To
make the results visibly manageable we restrict our attention to the larger
continuation classes. In particular, Figure 2 shows the continuation graph
for the 15 largest continuation classes. These 15 continuation classes are as-
sociated with 103593 of the 104544 grid elements of parameter space which
implies that over 99% of parameter space is accounted for. The boxed nodes
represent Morse graphs with multiple minimal nodes and therefore for the
corresponding parameter values there are multiple basins of attraction. Ob-
serve that there are three mutually adjacent continuation classes with mul-
tiple attractors. The sizes of these parameter regions are 13964, 5222 , and
1497 parameter boxes. Thus in roughly 20 percent of the parameter space
we study we can guarantee the existence of at least two basins of attraction.

We now turn to the question of identifying the structure of the dynamics
in the attractors. In particular we make use of the following language.
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Figure 2: Continuation Graph showing the 15 largest continuation classes
for the system (6). The boxed nodes represent Morse graphs with multiple
minimal nodes which implies that at the corresponding parameter values
there exist multiple basins of attraction. The yellow class contains 13964
boxes, the pink class contains 5222 boxes, and the green class contains 1497
boxes.

Definition 4.1. An isolated invariant set S for a map f : X 7→ X is a
T -cycle set if there exist T disjoint, compact regions N1, . . . , NT such that
S = Inv(N, f) where N := ∪Ti=1Ni is an isolating neighborhood, and

f(Ni ∩N) ⊂ Ni+1, i = 0, . . . , T − 1

where N0 := NT .

Consider the the continuation class with 13964 nodes. The associate
Conley Morse graph as shown in Figure 3. Recall that the bracketed numbers
identify the Morse set continuation class (MSCC) of each node in the graph.
The Conley Index of MSCC [0] is trivial except in dimension zero, where it
has invariant factor x+ 1 mod 2. By Proposition 5.8 in Ref. [2] we conclude
that the associate Morse set is a 1-cycle set. More specifically there is an
associated isolating neighborhood which is contractible and maps strictly to
its interior under the dynamics of (6).

As is indicated in Section 2.4 the above mentioned description in terms
of the 1-cycle set extend to the entire Morse set continuation class MSCC[0].
The three boxed nodes in Figure 4 indicate Morse set continuation classes
over which MSCC[0] extends.
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Figure 3: Conley Morse graph for the continuation class with 13964 nodes
in Figure 2.

Figure 4: Boxed nodes representing the continuation classes over which the
Morse set continuation class of MSCC[0] in Figure 3 extends to.

25



The other attractor, MSCC[3], has Conley Index which is trivial except in
dimension zero where it is represented by the invariant factor x4 + 1 mod 2.
This is characteristic of a 4-cycle set. The extent of this Morse set continua-
tion class is given by the boxed nodes in the continuation graph in Figure 5.

Figure 5: Boxed nodes representing the continuation classes over which the
Morse set continuation class of MSCC[3] in Figure 3 extends to.

Observe that the nodes in the continuation graph which are not boxed in
either Figure 4 or Figure 5 must contain another distinct attracting Morse
set continuation class. It appears, for example, as MSCC5 in the Morse
graph shown in Figure 6. The Conley Index of MSCC[5] in dimension zero
is represented by x2 + 1, which is characteristic of a 2-cycle set. Among the
fifteen largest continuation classes, these are all of the Morse set continuation
classes of attractors that appear.

Observe that we have characterized the attractors for a large fraction of
parameter space. However, because of the concern of extinction in the con-
text of small perturbations biologists often are interested in understanding
when the attractor is bounded away from the states of extinction. This is
often called persistence or permanence (see Ref. [10] for a precise definition
and further discussion). In the setting of this model extinction can be iden-
tified with the origin. We remark that the origin appears in the database
as MSCC[1]. It can also be checked that MSCC[1] extends over all of the
fifteen largest continuation classes (see Figure 7). Furthermore, in none of
these cases is it an attracting Morse set (special cases of this can be seen in
Figures 3 and 6). Since the computations have been done at a minimal fixed
scale we can conclude that (6) exhibits persistence.
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Figure 6: A Morse graph with an attractor that belongs to the Morse set
continuation class MSCC[5].

Figure 7: Boxed nodes indicate continuation classes for which the Morse set
containing the origin is not an attractor.
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Of course there are additional questions that can be asked concerning the
dynamics of (6). For some of these additional database queries can prove
useful. However, we hope that in the context of attractors, which is the
most reasonable entry point for questions concerning biologically observable
phenomena, we have made it clear that the database provides sufficient in-
formation to obtain useful nontrivial answers.

4.2 Three-dimensional coupled map lattice

Another example application of Conley-Morse Database software is the Cou-
pled Map Lattice (CML), a coupled system of maps introduced by K. Kaneko
and others independently around early 1980’s, see Ref. [13] and references
therein for more information.

The n-CML is an n-dimensional dynamical system F : Rn → Rn, with
F (x) = (F1(x), . . . , Fn(x)) for x = (x1, . . . , xn) given by

Fi(x) = (1− ε)fa(xi) +
1

2
(ε− δ)fa(xi−1) +

1

2
(ε+ δ)fa(xi+1)

i = 1, . . . , n,

where x0 = xn and xn+1 = x1. This system has three parameters, a, ε, and
δ. In this paper, we choose fa to be the logistic map, fa(ξ) = 1− aξ2.

There is a well-studied similar coupled dynamical system known as the
Globally Coupled Maps (GCM)[14] defined by

F (x)i = (1− ε)fa(xi) +
ε

n

n∑
j=1

fa(xj) i = 1, . . . , n.

As an important feature of CML, as compared to GCM, CML is a non-
symmetric coupling, and as a result, CML exhibits a traveling wave at some
parameters. In order to study the traveling waves more closely, M. Komuro
(personal communication) examined the 3-CML in detail, using conventional
numerical analysis. The object corresponding to traveling waves in 3-CML
is an invariant closed circle (ICC), which can be observed numerically in
a region of the (a, ε)-parameter plane of 3-CML with fixed δ = 0.06. See
Figures 8 and 9 for a numerically generated bifurcation diagram obtained by
M. Komuro using the numerical method proposed in Ref. [15].

Below, we describe the result of computation of the 3-CML using the
Conley-Morse Database software. In fact, the actual computation was done
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Figure 8: The numerically generated bifurcation diagram (colored plate in the
center) and corresponding schematic phase portraits for 3-CML, obtained by
M. Komuro. The parameter range is chosen to be [0.7, 0.8]×[−0.05, 0.05] with
δ = 0.06, which is divided into six regions, numbered by circled numerals.
Each parameter region corresponds to the plate numbered by the same circled
numeral. The ICCs appear in Regions 3–6. Especially, in Region 4, there
exist multiple ICCs, the unstable one being periodic with period two under
the action of 3-CML. Figure courtesy of M. Komuro.
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Figure 9: The invariant circles appearing in Region 4 in Figure 8, computed
numerically by M. Komuro. Figure courtesy of M. Komuro.

using the first version of the software explained in Ref. [2], as the latest
version of the software discussed in the previous sections was not yet fully
available at the time of the computation.

The computation parameters are taken as follows:

• (a, ε) varies in [0.72, 0.79]× [−0.02, 0.04]

• δ is fixed to 0.06.

Note that in this parameter region, fa has attracting period-2 periodic points.
The box of [0.72, 0.79] × [−0.02, 0.04] is divided into 16 × 16 small boxes,
and we take the center of each box as the input parameter value for each
computation. As the interval arithmetic is used in the software, we could have
taken the entire small boxes as the input parameters for the computations,
but this would have been much more time consuming, and the overestimates
would require us to use a finer grid in the parameter space. The phase space
for the logistic map is taken as [−1.1, 1.1], hence the entire phase space is
[−1.1, 1.1]3, on which we put the uniform grid decomposition into 29×29×29

boxes. When needed, we set the refinement level of subdivision as 4, in case
the computation result is not sufficient.

The Conley-Morse graph and corresponding phase space structure for
each parameter region in Figure 10 is shown in Figure 11. These results
agree well with the bifurcation structure shown in Figure 8.
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Figure 10: The bifurcation diagram computed by the Conley-Morse database
software. Compared to Figure 8, the number of divided regions of the pa-
rameter domain agrees, but each region is a little tweaked, which is mainly
due to the overestimation by the construction of multivalued maps.
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