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Abstract. We develop a new mathematical model for describing a dynamical

system at limited resolution (or finite scale), and we give precise meaning to the
notion of a dynamical system having some property at all resolutions coarser

than a given number. Open covers are used to approximate the topology of the

phase space in a finite way, and the dynamical system is represented by means
of a combinatorial multivalued map. We formulate notions of transitivity and

mixing in the finite resolution setting in a computable and consistent way.

Moreover, we formulate equivalent conditions for these properties in terms of
graphs, and provide effective algorithms for their verification. As an application

we show that the Hénon attractor is mixing at all resolutions coarser than 10−5.

1. Introduction and statement of results

The theory of dynamical systems has experienced tremendous growth and de-
velopment throughout the recent decades. Nevertheless, in spite of the undeniable
importance of the results describing complicated dynamical properties many of
these results are abstract existence or genericity results. This can be problematic
for example in applications, where generally more concrete and quantitative results
are desirable, especially if one is studying the properties of some very specific objects
for which analytic methods fail. It is therefore natural to try to use numerical and
computational techniques, and indeed there is an enormous amount of literature
in this direction. Unfortunately, this approach is limited to finite resolution and
to finite time and is therefore unsuitable for direct rigorous verification of infinite
time or infinitesimal scale properties without additional theoretical interpretation
of the results of computations.

This combination of numerical methods and theoretical interpretation can indeed
be remarkably successful in certain situations. In many cases non-trivial mathemat-
ics can reduce the problem to the verification of certain “inclusion conditions” or
the existence of certain geometric structures which can be rigorously verified numer-
ically; then this information can be used to develop symbolic dynamics or prove ex-
istence of certain trajectories, e.g., heteroclinic connections. This approach includes
the application of some topological methods, like the fixed point index or the Conley
index. We mention for example [1,2,12,13,16,20–22,28,31,37,39,40,42,46,50] and
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refer the reader to references therein for further information. However, the bottom
line is that by the intrinsic limitations of numerical computation, only “robust”
phenomena, i.e., phenomena which persist for small perturbations of the system,
can be proved in this way. Indeed, the requirement that all estimates be rigorously
bounded, necessarily implies that there is always a little margin of perturbation
in which they continue to hold true; see [30] for an interesting discussion of the
properties which can be rigorously proved numerically, referred to as “inheritable
properties”. This is of course in many ways also one of the strengths of the methods
rather than just a limitation, but it does mean that “unstable” phenomena, i.e.,
dynamical features which exist for one system but perhaps not for nearby systems,
are essentially undecidable, both in a theoretical as well as in a practical sense:
see [4] for a formal discussion of this problem. The best we can hope for in this
situation is to be able to prove that such phenomena occur for “some”, or per-
haps even “many”, systems close to the one of interest, but even this strategy is
sometimes extremely hard to implement.

One specific example of this situation is the famous and very well studied Hénon
family of two-dimensional diffeomorphisms given by

Ha,b(x, y) = (1 + y − ax2, bx).

This family was introduced by Hénon in [15] where he focused particularly on the
parameter values a = 1.4, b = 0.3, now commonly referred to as the “classical”
parameter values. For these parameter values, non-rigorous computer simulations

Figure 1. A numerical approximation of the attractor of the
Hénon map for the classical parameter values.

suggest that most orbits converge to a transitive attractor with a complicated frac-
tal geometric structure (see Figure 1), and exhibit chaotic dynamics. While the
existence of an attractor follows by relatively elementary arguments, it turns out
that it is extremely difficult, and indeed arguably impossible, to make any rigorous
assertions about the infinitesimal structure of the attractor. Indeed, the geometry of
the Hénon map suggests the occurrence of tangencies between stable and unstable
manifolds, and in fact in [3] it is proved that for b sufficiently close to 0.3 there ex-
ists some parameter a ∈ [1.392419807915, 1.392419807931] for which a homoclinic
tangency occurs (this is proved using some clever application of Conley index the-
ory combined with some numerical “inclusion” estimates as discussed above). Such
tangencies are a well known source of instability and bifurcations and associated
to a variety of dynamical phenomena such as infinitely many sinks [34,36], “small”
stochastic attractors [10,33] and others [14]. In particular the dynamics is extremely
unstable and there seems to be no hope to establish the actual dynamics of any
single given parameter. For small values of |b| it is nevertheless possible to show
that there is a positive Lebesgue measure of parameters a for which the dynamics
is stochastic in a very well defined sense, thus showing that stochastic dynamics
has in some sense positive probability. This was first proved for b = 0 in [18], with
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some generalization to other one-dimensional maps in [26, 27, 35, 44, 45], and for
b 6= 0 in [5, 6], with some generalizations in [33, 47]. A quantitative approach was
developed in [25] with some explicit measure bounds. Unfortunately, further ex-
tensions of these results to larger values of |b|, to include for example the classical
parameter values, seem for the moment still out of reach. We also emphasize that,
as mentioned above, these results still only provide a probabilistic description of
the parameter space, and do not in general yield information about any particular
given parameter.

Our goal in this paper is to approach the problem from a radically different
point of view, which provides a different kind of information and is hopefully much
more flexible and versatile, and more widely applicable. The underlying philosophy
is that only finite precision is usually of practical meaning for applications, and
all phenomena which take place below certain resolution are of no real importance,
either because of the limited accuracy with which a mathematical model describes a
physical system of interest (due to noise or truncations, for example), or because of
the finite precision of measuring devices which provide observable properties of the
system. Our goal is therefore to sketch the beginnings of a theory of finite resolution
dynamics and to give an example of a non-trivial implementation of the concepts
developed in such a theory. The starting point is defined by two basic “axioms” or
“principles” which finite resolution dynamics should verify:

(A) Computability and (B) Consistency

These principles can in practice be implemented in a variety of ways, but they
embody the fundamental ideas that: (A) dynamical properties should be formulated
in such a way that they are rigorously verifiable using computational methods, in
particular they should be related to finite time and finite resolution properties of
the system; (B) computations at a finer scale should yield more valuable results in
the sense that if a dynamical property holds at some finite scale then it should also
hold for any coarser representation of the same dynamics.

As an example of the application of these ideas we define a notion of combinato-
rial mixing which, in the framework of finite resolution dynamics, is analogous to
the standard notions of topological or measure-theoretical mixing for topological or
measurable systems, respectively. We shall prove the following

Theorem 1. The Hénon attractor is mixing at all resolutions > 10−5.

We emphasize that, once the appropriate definitions have been put in place, this
is a non-trivial rigorous statement about the dynamics of the Hénon map for the
classical parameter values, obtained by computer-assisted methods.

The structure of the paper is as follows. In Section 2 we introduce the defini-
tions which are at the foundations of our theory of finite resolution dynamics, and
we state and prove our main abstract result. More specifically, we give a precise
formulation of Axioms (A) and (B), define what we mean by the statement that
a certain abstract property is verified at all resolutions coarser than some ε, and
demonstrate the key fact that this can be rigorously proved by computer-assisted
arguments. In Section 3 we formulate natural notions of transitivity and mixing in
the finite resolution setting and prove that these finite-resolution definitions satisfy
the required consistency conditions (B). In Section 4 we provide explicit algorithms
for the verification of transitivity and mixing at finite resolution, and thus in par-
ticular provide a constructive proof that they satisfy the computability conditions
(A). In Section 5 we describe the particular application of our theory to the Hénon
map and we prove that this map is mixing at some finite but very fine scale.
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This paper is accompanied by efficient and flexible software programmed in the
C++ language and made freely available at [38] together with raw data for the
applications discussed in Section 5.

2. Abstract theory

One possible approach to represent a dynamical system in a finite way is based
on partitioning, that is, subdividing the phase space into a finite family of compact
sets with nonempty and disjoint interiors. This approach goes back several decades
and has proved extremely successful for describing certain classes of systems such
as uniformly hyperbolic diffeomorphisms and flows [7, 9, 41] and has been recently
further developed and used in various applications (see [2,28,32,37,42] for some ex-
amples). However, working with this kind of discretization in more general systems
may not well reflect the actual topology of the phase space. Therefore, in this paper
we introduce the idea of using a structure more closely related to the topology of
the phase space: an open cover. As we shall see below, the non-trivial overlap be-
tween elements of an open cover provides a crucial ingredient for the development
of a formal theory of finite resolution dynamics.

2.1. Open covers. Here and for the rest of the paper, X will always denote a met-
ric space; without loss of generality, we shall assume that the metric is bounded. This
generality is convenient, because in applications, like those considered in Section 5,
it may be necessary to work with the space X being a bounded, not necessarily
open, subset of Rn with the induced metric. An open ball centered at a point x ∈ X
and of radius r > 0 will be denoted by B(x, r). For a subset U ⊂ X, its diameter
diamU is the supremum of the distances between any two of its elements. Since X
is bounded, the diameter of any subset of X is finite. For a family A of subsets of
X we denote their union

⋃
A∈AA by |A|.

Definition 2.1. A finite family U of open subsets of X such that X = |U| is called
a cover of X.

We are going to use the elements of U as a finite approximation of the topology
on X. In general, the cover U provides a better approximation if it consists of
smaller elements.

Definition 2.2. The outer resolution

R+(U) := max{diam(U) : U ∈ U}
of a cover U is the maximal diameter of its elements.

Intuitively, if two points x, y ∈ X are at a distance larger than the outer resolu-
tion of a cover then they are well distinguished from each other by the cover since
they must belong to distinct elements of the cover.

Remark 2.3. For a totally bounded metric space (e.g., a bounded subset of the
Euclidean space with the inherited metric), there exist covers with arbitrarily small
outer resolution.

Definition 2.4. We say that a cover U1 of X is finer than another cover U2 of X
(or, equivalently, U2 is coarser than U1) if every element of U1 is contained in some
element of U2, and every element of U2 contains some element of U1.

Note that in this definition we require a mutual relation between the elements of
U1 and U2 in order to ensure that U2 is indeed a coarser description of the topology
of X and does not recognize any finer topological structures of the space than U1
does. This relation between (essential) covers defines a partial order on the space
of (essential) covers of X, so we can write U1 ≺ U2 if U1 is finer than U2.
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In this paper we shall focus on essential covers, which are in some sense minimal,
that is, no element can be removed from them without leaving a considerable part
of X outside the cover.

Definition 2.5. A cover U of X is essential if there exists ε > 0 such that every
U ∈ U contains some point x ∈ X such that B(x, ε) ⊂ U and B(x, ε) ∩W = ∅ for
all W ∈ U \ {U}.

Notice that if a cover is not essential, i.e., there is an element U of the cover that
does not satisfy the condition above for any ε > 0, then U must be contained in
the union of closures of the other elements of the cover, and thus is in some sense
superfluous; therefore, covers that are not essential may introduce a false feeling of
the topology of the space, and indeed, as will be made clear in the sequel, some
features of our theory do not go through without this assumption. Because of this
reason, from now on we shall always work with essential covers.

Remark 2.6. From any cover it is possible to create an essential one (without
increasing R+, but possibly decreasing the number of elements); see Appendix A
for details.

Remark 2.7. For essential covers, the definition of finer and coarser covers given
in Definition 2.4 reduces to the following: A cover U1 of X is finer than another
cover U2 of X (or, equivalently, U2 is coarser than U1) if every element of U1 is
contained in some element of U2. Indeed, this automatically implies the second
part: every element of U2 contains some elements of U1. To see this, just suppose
by contradiction that there exists some U2 ∈ U2 which does not fully contain any
element of U1. Then, since every element of U1 is contained in some element of U2,
it follows that U2 \ {U2} is still a cover, contradicting the fact that it is essential.
We thank Francesca Aicardi for this observation.

2.2. Combinatorial maps. We shall use the symbol( to denote a possibly mul-
tivalued map between two sets. Let X be a bounded metric space and U an open
cover of X.

Definition 2.8. A combinatorial map is a multivalued map F : U ( U .

Since U is finite, F is a finite object that can be represented in a purely combina-
torial way. If f : X → X is a map, we can use combinatorial maps to approximate
the map f .

Definition 2.9. We say that a combinatorial map F : U ( U is a representation
of a map f : X → X if for every U ∈ U we have

F(U) ⊇ {W ∈ U : W ∩ f(U) 6= ∅}.
The ideal situation would be to have a representation where we have an equality

F(U) = {W ∈ U : W ∩f(U) 6= ∅} but computing such a representation is generally
not possible in practice due to numerical approximation and computer round-off
errors in the calculation of a guaranteed outer bound for f(U): see Remark 2.14
below. At the other extreme we have the trivial combinatorial map which maps
each U to all elements of the cover. This is a combinatorial representation of f but
gives no information whatsoever about f . To control in some way this issue, and
keeping in mind also that generally F gives a better approximation if it is defined
on a finer cover, we introduce the following

Definition 2.10. The outer resolution

R+(F) := max{diamU,diam |F(U)| : U ∈ U}
of a combinatorial map F : U ( U is the larger of the maximum diameter of the
elements of the cover U and of the maximum diameter of their images.
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If f is a continuous map with some Lipschitz constant L ≥ 0 and the elements
of U are of similar size (e.g., balls of the same radius), then in principle one should
expect R+(F) ≈ max{1, L}R+(U) for a reasonable representation F of f .

Definition 2.11. Let U1 and U2 be two covers of X. We say that F1 : U1( U1 is
finer than F2 : U2( U2 (or, equivalently, F2 is coarser than F1) if U1 is finer than
U2 and for every U1 ∈ U1 and every U2 ∈ U2 such that U1 ⊂ U2, every element of
F1(U1) is contained in some element of F2(U2).

Intuitively, F1 is finer than F2 if the images of F1 are smaller than those of F2.
Indeed, it follows immediately from the definition that if F1 is finer than F2 then
|F1(U1)| ⊂ |F2(U2)| for all U1 ∈ U1 and U2 ∈ U2 such that U1 ⊂ U2. A key point of
our approach is to develop some dynamical notions which are actually computable.
In particular, to take advantage of the notions of combinatorial maps we need to
be able to compute such maps.

Definition 2.12. f is ε-computable if there exists a cover U of X and a method
for computing a combinatorial representation F : U ( U of f with R+(F) ≤ ε.

This essentially depends on how explicitly we know the map f and is generally
not a serious issue: see Remark 2.17. We conclude this section with a series of
remarks concerning the definitions above.

Remark 2.13. Unlike in the case of covers, the relation of being finer does not
define a partial order between combinatorial maps. Consider the following example:
X = {a, b, c} with the discrete topology, U1 =

{
{a}, {b}, {c}

}
, U2 =

{
{a, b}, {c}

}
,

U3 =
{
{a, b}, {b, c}

}
, F1 : {a} 7→

{
{a}
}
, {b} 7→

{
{a}
}
, {c} 7→

{
{c}
}

, F2 : {a, b} 7→{
{a, b}

}
, {c} 7→

{
{c}
}

, F3 : {a, b} 7→
{
{a, b}

}
, {b, c} 7→

{
{b, c}

}
. Obviously, U1 ≺

U2 ≺ U3. Moreover, F1 is finer than F2 and F2 is finer than F3. However, F1 is not
finer than F3, because for U1 := {b} ⊂ U2 := {b, c} the element {a} ∈ F1(U1) is
not contained in any element of F2(U2) =

{
{b, c}

}
.

Remark 2.14. Every map f : X → X has a unique minimal representation relative
to a given cover U defined by

Ff,U (U) := {W ∈ U : W ∩ f(U) 6= ∅}.
This is the obvious “abstract” definition of a representation of f which would be
natural if it did not have to be explicitly and rigorously computed. It is minimal
in the sense that the image of any U ∈ U by any other representation F of f
contains Ff,U (U). We emphasize, however, that although some representation F
of f can usually be computed in a relatively straightforward manner, the minimal
representation for the same map need not be computable at all. This is because, in
general, when using rigorous numerical methods, the best one can typically compute

is some outer approximation Bf
U of the image f(U) of each U ∈ U . Therefore, it

is usually possible to compute some Wf
U containing all the elements of U which

intersect Bf
U , good for constructing a representation of f . However, in general it

may be impossible to determine which of the elements of Wf
U actually do intersect

f(U) and which do not. This justifies our definition of a representation of f in which
we do not require that it is actually the minimal representation, and we allow that
F(U) contains some superfluous elements of U .

Remark 2.15. The composition of combinatorial maps can be easily defined. For-

mally, let 2U denote the set of all possible subsets of U and define the map F̂ : 2U →
2U as F̂(A) =

⋃
U∈A F(U) for any A ∈ 2U . Then for all n ≥ 1 we can write

Fn = F̂n ◦ i, where i : U → 2U is the “embedding” i(U) := {U}. In the same way
we can define the composition of two different combinatorial maps F and G as long
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as they are both defined on the same cover. It is easy to see that if F and G are
representations of f, g : X → X, respectively, then G ◦F is a representation of g ◦f .
In particular, if F is a representation of f then Fn is a representation of fn for
every n > 0.

Remark 2.16. Note that if F1,G1 : U1 ( U1 are finer than F2,G2 : U2 ( U2, re-
spectively, then G1 ◦ F1 is finer than G2 ◦ F2. In particular, if F1 is finer than F2

then also the same relation holds for iterations of these maps, that is, Fn
1 is finer

than Fn
2 . Indeed, take any U1 ∈ U1 and any U2 ∈ U2 such that U1 ⊂ U2. Take any

W1 ∈ G1(F1(U1)). There exists V1 ∈ F1(U1) such that W1 ∈ G1(V1). Since F1 is
finer than F2, and U1 ⊂ U2, for this V1 ∈ F1(U1) there exists some V2 ∈ F2(U2)
such that V1 ⊂ V2. Since G1 is finer than G2, and V1 ⊂ V2, for this W1 ∈ G1(V1)
there exists some W2 ∈ G2(V2) such that W1 ⊂ W2. As a consequence, W1 ⊂ W2,
where W2 ∈ G2(F2(U2)). Note that this proof does not go through if we replace
“and every U2 ∈ U2” with “there exists U2 ∈ U2” in Definition 2.11.

Remark 2.17. We make some brief remarks on the computability of combinatorial
maps. If f : Rn → Rn is a continuous map defined by means of an explicit formula
involving only elementary operations (addition, multiplication, etc.) and simple
arithmetic functions (like the trigonometric functions,

√
x, or ex), and an open

bounded set X ⊂ Rn can be found such that f(X) ⊂ X, then one can compute a
finite representation of f : X → X using the concept of interval analysis [29]. For a

cover U of X that consists of products of open intervals, a set Bf
U containing f(U)

can be computed for each U ∈ U , where Bf
U is also a product of open intervals. Then

we define Wf
U to be the union of those elements of U which intersect Bf

U (such a

set can be computed easily). The multivalued map F : U 3 U 7→ Wf
U ⊂ U is then a

combinatorial representation of f on X. Obviously, the smaller the elements of the
cover U are taken, the smaller the outer resolution of the constructed representation
should be expected. This argument proves that a finite representation of dynamics
for a wide class of maps is computable at virtually any resolution. We shall use the
idea described above in Section 5 for the analysis of the Hénon map.

2.3. The axioms of finite resolution dynamics. We are now ready to formalize
the axioms of computability and consistency introduced in Section 1, based on
the notion of combinatorial maps. Let P := P(F) be a predicate concerning a
combinatorial map F .

Definition 2.18. We say that P is a finite resolution property if it satisfies the
following two conditions:

(A) Computability: P is computable, that is, there exists an algorithm
which for any combinatorial map F can establish in finite time whether
F satisfies P or not.

(B) Consistency: P is consistent, that is, for any pair of combinatorial maps
F1 and F2 such that F1 is finer than F2, we have P(F1) =⇒ P(F2).

We remark that the definition is given purely in terms of combinatorial maps
with no reference to the underlying space or any map whose representation F might
be. Thus we have an a priori notion of what it means for a property P to be an
“acceptable” property for the investigation of finite resolution dynamics. In general
we will apply this definition to combinatorial maps which arise as representations
of some particular map f : X → X on a metric space X and thus obtain some
coherent statements about the “finite resolution” dynamics of the map f .

We make here a simple observation which is crucial to motivate the theory. Part
(B) in the definition above is not in itself sufficient to define what it means for the
property P to hold at “all resolutions > ε”. Indeed, assuming that P holds for some
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combinatorial representation F with respect to some cover U with outer resolution
R+(F) ≤ ε, it is easy to construct another combinatorial representation F̃ with

R+(F̃) > ε but which is not coarser than F and therefore is not automatically guar-
anteed to satisfy P. In other words, choosing a cover with a larger resolution does
not necessarily guarantee that the cover is coarser, and therefore the consistency
condition does not provide any information. We need some notion which guaran-
tees that P holds for all combinatorial maps at sufficiently coarse scales, based on
the fact that P has been verified at some scale for a single particular choice of
combinatorial map. To formulate this notion we need to introduce an additional
definition.

2.4. Inner Resolution. The following definition and its application constitute in
some sense the key idea of this paper.

Definition 2.19. The inner resolution of a cover U is

R−(U) := sup{d ≥ 0 : ∀x ∈ X ∃U ∈ U : B(x, d) ⊂ U}.

The inner resolution of a combinatorial map F : U ( U is

R−(F) := R−(U).

Positive inner resolution is a crucial feature that distinguishes our approach from
one based on partitions, where the inner resolution is 0.

We have used the convention here that B(x, 0) = {x} so that the inner resolution
is the supremum of the numbers d > 0 such that every ball B(x, d) ⊂ X is contained
in some U ∈ U , or 0 if such d > 0 does not exist. In a connected space, the quantity
R−(U) can be interpreted as the minimal width of overlapping between adjacent
elements of U . Intuitively, if the distance between two points x, y ∈ X is smaller
than the inner resolution of a cover then these points can be identified by means of
belonging to a common element of the cover.

Remark 2.20. If X is compact then we can apply Lebesgue’s number lemma to
any open cover U of X in order to know that there exists a number δ = δ(U) > 0
such that every subset of X whose diameter does not exceed δ is contained in some
element of the cover. Then obviously R−(U) ≥ δ/2 > 0.

Remark 2.21. In certain cases, e.g., if X is a bounded subset of a Euclidean space,
for any ε ≥ δ > 0 it is possible to construct a cover U of X such that R+(U) ≤ 2ε
and R−(U) ≥ δ. In particular, this is true if there exists a finite number of points
{x1, . . . , xn} ⊂ X such that U0 := {B(xi, ε − δ) : i = 1, . . . , n} is a cover of X.
Indeed, let us consider U := {B(xi, ε) : i = 1, . . . , n}. Obviously, U is a cover of X
and R+(U) ≤ 2ε. Moreover, every x ∈ X is within the distance of r < ε − δ from
xk for some k ∈ {1, . . . , n}, and thus B(x, δ) ⊂ B(xk, ε) by the triangle inequality,
so R−(U) ≥ δ.

Remark 2.22. The inner resolution also provides a lower bound for how “thick”
the cover elements are in terms of containing a ball of a big enough radius. Define
T (U) := sup{d > 0 : ∀U ∈ U ∃x ∈ X : B(x, d) ⊂ U}. (See Figure 2 for an
elementary example.) It is easy to see that for an essential cover U of X we have
R−(U) ≤ T (U). Indeed, take any positive number d < R−(U). Take any U ∈ U .
By the assumption that U is essential, there exists x ∈ U such that for some ε > 0
the ball B(x, ε) is contained in U and disjoint from all the other elements of the
cover U . Since d < R−(U), for this particular x there exists some U ′ ∈ U such
that B(x, d) ⊂ U ′. However, U is the only element of U that contains x, so clearly
U ′ = U , and thus B(x, d) ⊂ U . This shows that for every U ∈ U there exists an
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Figure 2. An illustration of the quantities R+(U), R−(U) in Def-
initions 2.2 and 2.19, and T (U) in Remark 2.22, for a sample cover
U = {U1, U2, U3, U4}.

x ∈ U such that B(x, d) ⊂ U . Since d < R−(U) can be arbitrarily close to R−(U),
the supremum of these numbers is greater than or equal to R−(U).

2.5. Finite resolution properties for all resolutions > ε. We are now ready to
state precisely what we mean when we say that a property holds at all resolutions
coarser than some ε, and to state and prove our main abstract theorem. Let P be
a finite resolution property and let f : X → X be a map for which there exists a
representation whose outer resolution is ≤ ε.

Definition 2.23. f satisfies P at all resolutions > ε if P is satisfied for every
representation F : U ( U of f with R−(F) > ε.

We are using here the notion of inner resolution to quantify the resolution of a
cover, but recall from Remark 2.21 that in many cases the inner and outer resolution
can be chosen arbitrarily close (up to the factor of 2). Notice also that the definition
requires P to hold for any cover U and any combinatorial representation F : U ( U
as long as R−(F) > ε. It is therefore a priori an unverifiable condition. However,
we have the following

Theorem 2. Suppose P is a finite resolution property. If P holds for a represen-
tation F0 of f with R+(F0) ≤ ε then P holds for all representations F of f with
R−(F) > ε. Thus f satisfies P at all resolutions > ε.

Proof. We present the proof in the form of two lemmas.

Lemma 2.24. Let U1 and U2 be two covers of X. If R+(U1) < R−(U2) then
U1 ≺ U2.

Proof. Take any number r such that R+(U1) < r < R−(U2). Let U1 ∈ U1. Consider
a ball B(x, r) for some x ∈ U1. From the fact that r > R+(U1) it follows that
U1 ⊂ B(x, r). Since r < R−(U2), there exists U2 ∈ U2 such that B(x, r) ⊂ U2, and
thus U1 ⊂ U2. Now consider any U2 ∈ U2. Then (by Remark 2.22) there exists a
ball B(x, r) ⊂ U2. Since U1 is a cover of X, there exists U1 ∈ U1 such that x ∈ U1.
Since diamU1 < r, we have U1 ⊂ B(x, r), and thus U1 ⊂ U2. �

Lemma 2.25. If U1 and U2 are two covers of X, F1 : U1( U1 is a representation of
some map f : X → X, and R−(U2) > R+(F1), then any representation F2 : U2 (
U2 of f is coarser than F1.

Proof. By Lemma 2.24, we have U1 ≺ U2. Take any U1 ∈ U1 and any U2 ∈ U2
such that U1 ⊂ U2. Take x ∈ U1. Take a number r such that R+(F1) < r <
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R−(U2). Then there exists W2 ∈ U2 such that B(f(x), r) ⊂ W2. Since F2 is a
representation of f and x ∈ U2, F2(U2) contains all the elements of U2 which
contain f(x), including W2. On the other hand, since diam |F1(U1)| < r, every
W1 ∈ F1(U1) is contained in B(f(x), r) ⊂ W2. This proves that indeed F2 is
coarser than F1. �

The statement in the Theorem now follows immediately from Lemma 2.25 and
the definitions. �

Remark 2.26. Lemmas 2.24 and 2.25 show a tremendous advantage of using open
covers as opposed to partitions, because there is no easy condition defined in terms
of the features of a partition itself which would guarantee that this partition and any
map on it are coarser than some other partition and some other map, respectively,
both possibly given a priori (e.g., as a result of some computation, as we do in
Section 5).

Remark 2.27. If one prefers to do computations for partitions instead of using open
covers, then F0 in the assumptions of Theorem 2 can in fact be a multivalued map
on a partition. Definition 2.10 of the outer resolution in this case can be applied
directly, Definition 2.9 of a representation can be taken the same and is equivalent to
requesting that f(U) ⊂ int |F(U)|, and the predicate P can also be the same as for
a combinatorial map on a cover. Note, however, that the conclusion of Theorem 2
is not valid for partitions, because their inner resolution is 0.

3. Transitivity and mixing

Let F : U ( U be a combinatorial map, and let F−1 denote its inverse defined
by the following condition: V ∈ F−1(U) if and only if U ∈ F(V ). We introduce
the notions of transitivity and mixing for combinatorial maps, further also called
combinatorial transitivity and combinatorial mixing, respectively.

Definition 3.1. F is transitive if for every U, V ∈ U there exists n > 0 such that
V ∈ F−n(U). F is mixing if for every U, V ∈ U there exists N > 0 such that
V ∈ F−n(U) for all n > N .

We shall prove the following

Proposition 3.2. Combinatorial transitivity and combinatorial mixing are finite
resolution properties.

To prove the proposition we need to prove the computability condition (A) and
the consistency condition (B) in the definition of finite resolution property. Con-
dition (A) says that the properties of (combinatorial) transitivity and mixing are
algorithmically verifiable in finite time. This is almost immediate from the def-
initions and Lemma 3.5 below, since combinatorial transitivity and mixing only
require checking a finite number of conditions (because U is finite); however, in
Section 4 we provide explicit algorithms which can be used to verify the conditions
in an efficient way in practice. In this section we prove (B).

Notice first that mixing implies transitivity but the converse is not true in gen-
eral. Moreover, since V ∈ F−n(U) is equivalent to U ∈ Fn(V ), one can equivalently
formulate the combinatorial conditions for the n-th iterate of F instead of the n-th
preimage of F , thanks to the symmetry between U and V in these conditions.
We shall use this easy observation transparently in the sequel. We shall consider
transitivity and mixing separately.

Lemma 3.3. Combinatorial transitivity is a consistent property.



FINITE RESOLUTION DYNAMICS 11

Proof. Let U1 and U2 be two covers of X, with U1 finer than U2. Let F1 : U1 (
U1 and F2 : U2 ( U2 be combinatorial maps. Assume that F1 is finer than F2

and that F1 is transitive. We shall show that under these assumptions also F2 is
transitive. Let U2, V2 ∈ U2. Let B be a ball contained in U2 and disjoint from all
the other elements of U2; the existence of such a ball follows from the fact that
U2 is essential. Let U1, V1 ∈ U1 be such that U1 ∩ B 6= ∅ and V1 ⊂ V2. Obviously,
in this case U1 ⊂ U2. By the assumption on transitivity of F1, there exists n > 0
such that U1 ∈ Fn

1 (V1). Since |Fn
1 (V1)| ⊂ |Fn

2 (V2)|, we know that U1 ⊂ |Fn
2 (V2)|.

In particular, U1 ∩B ⊂ |Fn
2 (V2)|, and therefore U2 ∈ Fn

2 (V2), because otherwise no
part of B could have been covered by Fn

2 (V2). Since the choice of U2, V2 ∈ U2 was
arbitrary, this proves that F2 is transitive. �

Lemma 3.4. Combinatorial mixing is a consistent property.

Before proving Lemma 3.4, we first prove two simple lemmas regarding an equiv-
alent condition for mixing of combinatorial maps.

Lemma 3.5. Let F : U ( U be a combinatorial map, and let k > 0. If Fk(U) = U
for all U ∈ U then also Fn(U) = U for all U ∈ U and for all n > k.

Proof. This follows by induction from the fact that Fk+1(U) =
⋃

V ∈F(U) Fk(V )

and that F(U) 6= ∅ and Fk(V ) = U . �

Lemma 3.6. Let F : U ( U be a combinatorial map. Then F is mixing if and
only if there exists k > 0 such that Fk(U) = U for all U ∈ U .

Proof. Let us first assume that F is mixing. Then for every U, V ∈ U there exists
NU,V such that V ∈ Fn(U) for all n > NU,V . Since U is finite, the number k :=
max{NU,V : U, V ∈ U} is well defined and finite. Obviously, for this k, the set
Fk(U) contains every V ∈ U , for all U ∈ U .

Now suppose that Fk(U) = U for all U ∈ U and some k > 0. Lemma 3.5 implies
that Fn(U) = U for all U ∈ U and all n ≥ k, which immediately implies that F is
mixing. �

Proof of Lemma 3.4. Let U1 and U2 be two covers of X, with U1 finer than U2.
Let F1 : U1 ( U1 and F2 : U2 ( U2 be combinatorial maps. Assume that F1 is
finer than F2 and that F1 is mixing. We shall show that under these assumptions
also F2 is mixing. Take k > 0 such that Fk

1 (U) = U1 for all U ∈ U1, given by
Lemma 3.6. Take any W ∈ U2 and consider Fk

2 (W ). Since U1 is finer than U2, there
exists some U ∈ U1 such that U ⊂ W . Since F1 is finer than F2, it follows that
|Fk

1 (U)| ⊂ |Fk
2 (W )|. The assumption that U2 is essential implies that Fk

2 (W ) = U2.
Since the choice of W ∈ U2 was arbitrary, it follows from Lemma 3.6 that F2 is
mixing. �

4. Graph algorithms

In this section we provide explicit algorithms for the verification of combinatorial
transitivity and mixing. In particular, we give a constructive proof of (A). The first
step is to translate the properties defined in Section 3 into the language of graphs
associated with combinatorial maps.

We recall that a finite directed graph, further called graph for short, is a pair
G = (V, E), where V is a finite set whose elements are called vertices, and E ⊂ V×V
is a set of selected (ordered) pairs of vertices. The elements of E are called edges.
Combinatorial maps are very naturally encoded as graphs.

Definition 4.1. We say that G = (V, E) is the graph associated with a combina-
torial map F on a cover U of X if V = U and E = {(U, V ) ∈ U × U : V ∈ F(U)}.
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In this section we explain how the verification of the properties of combinatorial
transitivity and mixing can be reduced to the verification of certain properties of the
associated graphs. We then describe in some detail specific algorithms that verify
these properties, and we upper provide bounds for their effectiveness. Before we
show such algorithms, let us explain how their effectiveness is measured. A running
time estimate of an algorithm is typically given by means of the order of the number
of required primitive operations as a function of the size of the input, here given
by |V|, the size of the vertex set, and |E|, the size of the edge set. We use the
notation O

(
Ψ(|V|, |E|)

)
to indicate that there exist constants c, n0 > 0 such that

for any graph G = (V, E) for which |V|, |E| ≥ n0, the number of operations Φ(G) of
the algorithm applied to the graph G satisfies the inequality Φ(G) ≤ cΨ(|V|, |E|).
This gives an asymptotic upper bound for the worst case running time. For a more
detailed explanation of this notation and of running time in general, the reader is
referred to [11, §3.1]. In what follows, we say that an algorithm runs in linear time
if its worst case running time is O

(
|V|+ |E|

)
.

Proposition 4.2. There exists an algorithm which verifies in linear time whether
a combinatorial map is transitive or not. There exists an algorithm which verifies
in linear time whether a combinatorial map is mixing or not.

Notice that the size |V| of the vertex set is exactly the number of elements of the
cover U . Moreover, in many situations, such as if the map f is Lipschitz and the
elements of U are of similar size, the expected size F(U) of the image of each element
U , is uniformly bounded, independently of the resolution of the cover. Therefore,
in practice, the size |E| of the edge set is bounded by a constant multiple of the
size |V| of the vertex set, which is exactly the number of elements in the cover.
Thus the algorithms we describe, in many situations, actually run in linear time in
the number of the elements of the cover U . We consider this linear time property
as an important characteristic of our method since it implies that as computing
memory and power increase, it will be realistically possible to obtain significant
improvements to the scale at which mixing is verified in systems of interest, such as
the Hénon map which we consider in this paper (see, however, additional remarks
on this point in Section 5.2.3).

The remaining part of this section is devoted to the proof of Proposition 4.2. In
particular we shall obtain completely explicit forms of the required algorithms. In
Section 4.1 we show that the problem can be formulated in terms of the verification
of certain properties of directed graphs, namely strong connectedness and aperi-
odicity. The algorithms for verifying these properties are not new. An algorithm
that computes strongly connected components of a directed graph in linear time
belongs to the canons of graph algorithms (see [11, §22.5]), and we use it below to
determine whether a given graph is strongly connected. An algorithm for proving
aperiodicity is given in [48] but without a formal proof of its correctness, which we
shall give here. For completeness, and for the benefit of readers who are not familiar
with graph algorithms or algorithms in general, we shall give full descriptions of
these algorithms below. They actually require some non-trivial constructions which
we believe are of independent, albeit relatively technical, interest. In particular, we
provide a fully self-contained proof of Proposition 4.2.

In Section 4.2 we discuss the representation of graphs in computer’s memory. In
Section 4.3 we describe a basic way of “exploring” graphs algorithmically and of
describing certain structures of graphs. This approach, called “depth first search”,
underpins both the method for computing strongly connected components described
in Section 4.4, and the method for verifying aperiodicity described in Section 4.5.
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4.1. Strongly connected and aperiodic graphs. We now show how the notions
of combinatorial transitivity and mixing can be reduced to certain properties of the
associated graphs. A path in a graph G = (V, E) is a sequence (Ui)

n
i=0 such that

(Ui, Ui+1) ∈ E for all i = 0, . . . , n− 1.

Definition 4.3. We say that a graph G = (V, E) is strongly connected if for every
U, V ∈ V there exists a path (v0, . . . , vk) in G such that v0 = U and vk = V .

The length of a path (Ui)
n
i=0 is n. A cycle in G is a path in which U0 = Un. The

greatest common divisor of the lengths of all the cycles in a graph G = (V, E) is
called the period of G.

Definition 4.4. We say that a graph G = (V, E) is aperiodic if its period equals 1.

Lemma 4.5. A combinatorial map is transitive if and only if the associated graph
is strongly connected. A combinatorial map is mixing if and only if the associated
graph is strongly connected and aperiodic.

Proof. Since the existence of a path of length n from U to V in the graph associated
with a combinatorial map F is equivalent to V ∈ Fn(U), the equivalence in the
case of transitivity follows immediately from the definitions.

The statement on mixing can be derived, with certain effort, from [17], but for
the sake of completeness we provide a detailed proof. Assume that a combinatorial
map F : U ( U is mixing. Then Lemma 3.6 implies that there exists k > 0 such
that Fk(U) = U for all U ∈ U . It is thus obvious that G is strongly connected.
Lemma 3.5 implies that also Fk+1(U) = U for all U ∈ U . In particular, U ∈ Fk(U)
and U ∈ Fk+1(U). In terms of the graph G, this implies that there exist cycles of
the co-prime lengths k and k + 1 in G through U , and thus G is aperiodic.

Let us now focus on the opposite implication. Let T = (Uj0 , . . . , Ujt) for some
t > 0 be a cycle in G that runs through all the vertices of G (its existence follows
from the strong connectedness of G). Since the GCD of the lengths of all the cycles
in G is 1, there exist cycles C1, . . . , Cr and D1, . . . , Ds of lengths p1, . . . , pr and
q1, . . . , qs, respectively, such that p1 + · · · + pr − q1 − · · · − qs = 1. Consider the
cycles Tkl in G composed of T , k copies of C1, . . . , Cr, and l copies of D1, . . . , Ds.
The length of each such cycle is tkl = t + kp + lq, where p := p1 + · · · + pr and
q := q1 + · · · + qs. Since p = q + 1, we have tkl = t + (k + l)q + k. If we fix any
vertex U of G at the cycle T and consider k = 0, . . . , t− 1 with l = t− k, then we
obtain paths from U to U whose lengths are t+ tq+k = tp+k. We can complement
these cycles by following T to paths of length tp + t = t(p + 1) that end at each
subsequent vertex of T . Since T runs through all the vertices of G, it follows that
F t(p+1)(U) = U . Since U ∈ U was chosen arbitrarily, it follows from Lemma 3.6
that F is mixing. �

4.2. Representation of graphs. The first step in developing algorithms for study-
ing properties of a graph is to represent such a graph in computer’s memory. One
standard way to do this is as a collection of adjacency lists. We say that a vertex v
is adjacent to another vertex u if the edge (u, v) is in the graph. The adjacency-list
representation of a graph G = (V, E) consists of an array of |V| lists, one for each
vertex in V. For each u ∈ V, the adjacency list of u contains all the vertices v ∈ V
such that (u, v) ∈ E in certain order. Searching through this list or taking one ad-
jacent vertex after another can be done in the time proportional to the number of
vertices in the list.

Other representations, such as an “adjacency matrix” representation, can also
be used and may be more or less convenient depending on the structure of the
graph under investigation. As a general rule, the adjacency-list representation is
preferable for sparse graphs, that is graphs for which |E| is of a lower order than
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its maximum possible value of |V|2, e.g., if it is proportional to |V|. This is usually
the case for combinatorial maps and thus we shall use this representation of graphs
here.

4.3. The Depth First Search algorithm. Depth First Search (DFS) is an al-
gorithm for scanning a graph G = (V, E). It starts at an arbitrarily chosen vertex,
and follows edges and paths to visit other vertices in the graph. If no more ver-
tices can be reached in this way then an arbitrary unvisited vertex is chosen and
the algorithm continues running from that vertex. Each vertex u ∈ V is assigned
a unique discovery time tu ∈ N which reflects the order in which the vertices are
visited, or discovered. The general strategy of the algorithm while visiting a vertex
is to take the first edge leading to an unvisited vertex and to follow it. If no more
vertices can be discovered from a given vertex, then the algorithm traces back and
checks the other edges leading from the previous vertex. The name “depth first
search” comes from the fact that the search goes as deep into the graph as possible
using the first edge leading to an unvisited vertex, and the other edges emanating
from each vertex are only checked afterwards. This is different from another well
known strategy, called “breadth first search”, in which all the edges leading from
each vertex are checked before the search continues from the discovered vertices.
The details of the DFS procedure are summarized in the following

Algorithm 4.6.
function DFS

input: G = (V, E) — directed graph
code: time := 0

for each u ∈ V do
if not defined tu then

DFS-Visit (u);

function DFS-Visit (u)
time := time + 1;
tu := time;
for each v ∈ V such that (u, v) ∈ E do

if not defined tv then
DFS-Visit (v);

This algorithm runs in linear time O
(
|V|+ |E|

)
, because the function DFS-Visit

is called exactly once for each vertex in the graph, and all the edges emanating from
each vertex are also checked exactly once. Note that in order to achieve the linear
time in practice, it is necessary to represent the graph in such a way that scanning
through the set of all the edges emanating from a given vertex can be done in the
time proportional to the number of these edges, like in the case of the adjacency-list
representation of a graph. The reader is referred to [11, §22.3] for more details on
the DFS algorithm.

4.4. Strongly connected components. One of many applications of the depth
first search algorithm is a method for finding the strongly connected components
of a graph.

The most standard approach (see [11, §22.5]) is to run the DFS algorithm on
the graph G, and then to compute depth first trees of GT (the transpose of G,
obtained from G by inverting the direction of all the edges), which turn out to form
the strongly connected components of G. Although this algorithm runs in linear
time and memory, it is inconvenient if applied to huge graphs because of the need
to compute GT , which takes up as much memory as G itself, and thus effectively
doubles memory usage.
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Because of this reason, we use Tarjan’s algorithm instead for computing strongly
connected components of a graph (see [43,49]). This algorithm is based directly upon
DFS. In addition to computing the discovery time tu for each visited vertex, it also
computes the lowest discovery time lu of all the vertices reachable from that vertex.
This number is computed during the DFS itself, so that it is always known when
needed. Moreover, during the DFS run, the visited vertices are put on a stack S, and
each strongly connected component Ck is taken from the stack whenever a visited
vertex is determined to “close” such a component. For the sake of completeness, we
provide a pseudocode of this algorithm below, but we refer to [43] for the proof of
its correctness and for more explanations.

Algorithm 4.7.
function SCC

input: G = (V, E) — directed graph;
code: time := 0; k := 0; S := empty stack;

for each u ∈ V do
if not defined tu then

tarjan (u);
return (C1, . . . , Ck)

function tarjan (u)
time := time + 1; tu := lu := time;
put u on the top of the stack S;
for each v ∈ V such that (u, v) ∈ E do

if not defined tv then
tarjan (v);
lu := min(lu, lv);

else if v is in S then
lu := min(lu, tv);

if tu = lu then
k := k + 1;
remove the elements from the top of S until u has been

removed, too, and put all of the removed elements into Ck;

With this algorithm, we now determine whether a given graph is strongly con-
nected in the most obvious way possible. Namely, we compute the strongly con-
nected components and check if there is only one such component, as made precise
below.

Algorithm 4.8.
function StronglyConnected

input: G = (V, E) — directed graph;
code: (C1, . . . , Ck) := SCC (G);

if k = 1 and cardC1 = cardV then
return true;

else
return false.

The following features of the above algorithm are obvious:

Lemma 4.9. Algorithm 4.8 applied to a directed graph G = (V, E) returns true if
and only if G is strongly connected. This algorithm runs in linear time.

4.5. Aperiodic graphs. Efficient computation of the greatest common denomina-
tor of cycles in a strongly connected directed graph is less standard, and the solution
suggested in [17] yields cubic time. However, there exists an algorithm which runs
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in linear time, see [48]. For the sake of completeness, we describe this algorithm
below and prove its correctness (note that the latter is not provided in [48]). This
algorithm is based upon the standard DFS (Depth First Search) algorithm that
scans the entire graph starting at an arbitrarily chosen vertex (recall the assump-
tion that the graph is strongly connected), and computes the greatest common
divisor of certain numbers related to the edges of the graph.

Algorithm 4.10.
function GraphPeriod

input: G = (V, E) — a strongly connected directed graph;
u — an element of V;
du ∈ Z — the depth of u in the DFS tree being constructed;
p ∈ Z — the GCD of cycle periods found so far;

code: for each v ∈ V such that (u, v) ∈ E do
if defined dv then

p := GCD (p, dv − du − 1);
else

GraphPeriod (G, v, dv := du + 1, p);
return p.

Lemma 4.11. Algorithm 4.10 applied to a strongly connected directed graph G =
(V, E), any element r ∈ V, and the numbers dr := 0 and p := 0, returns the greatest
common divisor of the lengths of all the cycles in G. This algorithm runs in linear
time.

Proof. Given a strongly connected graph G = (V, E), let T = (V, E ′) denote the tree
obtained by running Algorithm 4.10 on G, starting with the vertex r ∈ V, which
becomes the root of T . The set E ′ consists of all the edges which incur recursive
calls of the function GraphPeriod. The computed depth of each vertex u ∈ V in T is
denoted by du, with dr = 0. For each edge e = (u, v) ∈ E\E ′, define de := dv−du−1.
Let c be the GCD (greatest common divisor) of all these numbers de. This is the
quantity returned by this algorithm. We shall prove that c equals the GCD of the
lengths of all the cycles in G, further denoted by c′.

Let us first prove that c′|c. Consider e = (u, v) ∈ E \ E ′. Since G is strongly
connected, there exists a path pv,r in G from v to r; denote its length by d. Note
that the path pr,u in T from r to u is of length du, and the path pr,v in T from r
to v is of length dv. Since pr,u combined with e and pv,r is a cycle in G of length
du +1+d, and pr,v combined with pv,r is a cycle in G of length dv +d, the common
divisor c′ of the lengths of all the cycles in G must divide the difference between
these lengths, which is dv − du − 1. Therefore, c is a GCD of numbers divisible by
c′, and thus c′|c.

Let us now prove that c|c′. Let (v0, . . . , vn) be any cycle in G. We shall prove
that c|n. Consider the depths of each vi in T . The difference in the depth traversed
by each edge ei = (vi, vi+1) is δi := dvi+1

−dvi , which equals 1 if ei ∈ E ′. Since v0 =

vn, obviously dv0 = dvn , and thus
∑n−1

i=0 δi = 0. In particular, −n =
∑n−1

i=0 (δi−1) =∑n−1
i=0 (dvi+1 − dvi − 1). If ei ∈ E ′ then the corresponding item in the sum is zero,

otherwise it is divisible by c. Therefore, c|n.
The observation that each edge in the graph G is processed exactly once shows

that the algorithm runs in linear time O(|E|), which completes the proof. �

5. Numerical computations

We are finally ready to apply all the ideas above to a specific example. First of
all, we state a more precise version of the theorem given in the introduction.
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Theorem 3. There exists an open set X ⊂ R2 such that Ha,b(X) ⊂ X and Ha,b|X
is (combinatorially) mixing at all resolutions > 10−5 for all (a, b) in an open set
P ⊂ R2 containing (1.4, 0.3).

We choose the Hénon map for the so-called “classical” parameter values simply
because it is a very well known and well studied example for which nothing sub-
stantial is known. We have purposefully formulated all our definitions and results so
far in full generality so that it is straightforward how to apply them to many other
examples. What is left is to construct a representation F of the Hénon map such
that R+(F) ≤ ε and then apply the algorithms described above to show that F
is mixing. We describe the construction of F in detail so that minor modifications
should allow essentially the same construction to work in many other cases.

Notice that the result applies to an open set of parameter values. This is an in-
trinsic feature of the method deriving from the use of interval arithmetic. Since both
numbers 1.4 and 0.3 are not representable in the binary floating-point arithmetic,
small intervals containing these numbers are taken for the actual computations.
Therefore, the statement is automatically proved for an open set of parameters
containing these numbers. This costs nothing from the computational point of view
and in fact corresponds to the natural fact that numerical methods necessarily only
yield results which are stable under sufficiently small perturbations.

5.1. General strategy. We describe in detail the strategy for a general continuous
map f : Rn → Rn.

5.1.1. Open interval arithmetic. For the purpose of the numerical computations,
we use a slight modification of interval analysis introduced in [29].

In the typical approach, closed intervals are used instead of numbers, and the
result of each arithmetic operation on such intervals is defined as the smallest possi-
ble interval containing the results of the operation on any numbers taken from each
of the intervals, e.g., [a1, a2] − [b1, b2] = [a1 − b2, a2 − b1]. Since we are interested
in doing these computations using a fixed-size floating point representation of real
numbers, the set of actual numbers that can be represented is finite, and thus we
must round the endpoints of the resulting intervals to the nearest representable
number in the downwards direction for the left endpoint, and in the upwards direc-
tion for the right one. As a consequence, the result of calculations carried out on
intervals is an interval that contains every possible exact result of those operations
on the numbers belonging to these intervals.

Since we work with open covers, in our case it is necessary to work with open
intervals, instead of closed ones. This implies slight differences in the case of some
arithmetic operations on intervals. Although addition, subtraction, multiplication
and division are the same, those operations in which closed intervals would arise
must be slightly changed, like rising to even powers (e.g., computing x2) or some
trigonometric functions (mainly sin and cos). Namely, the result of an operation on
open intervals with representable endpoints is defined as the smallest open interval
with representable endpoints which contains the results of the operation on single
elements taken from these intervals, e.g., (−1, 1)2 = (−ε, 1), where −ε < 0 is the
largest representable negative number (the set of representable numbers is finite,
so this number is well defined).

5.1.2. Open cover parameters. We start by selecting a bounded rectangular area
B := (a1, a1 + w1) × · · · × (an, an + wn) ⊂ Rn which is assumed to contain the
dynamics of our interest. We cover this area with a finite family of overlapping
open boxes (n-dimensional hypercubes). We set some number p1 ∈ N of parts into
which we intend to subdivide the first interval (a1, a1 + w1) in the definition of
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B, and then we compute the numbers p2, . . . , pn so that each pi is approximately
proportional to wi for i = 1, . . . , n. Then we choose some small κ > 0 to be the size
of the overlapping margin. As a general rule we can choose κ to be the smallest
positive representable number in the chosen computer precision (recall that the set
of representable numbers in (0, 1) is finite). We then consider the family

B :≈
{

Πn
i=1

(
ai + kiwi/pi, ai + (ki + 1)wi/pi + κ

)
: ki = 0, . . . , pi − 1

}
,

where the :≈ symbol is used to indicate the fact that the actual endpoints of the
intervals are computed in the floating point arithmetic with rounding the result of
each operation to the nearest representable number either in the downwards direc-
tion (for the left endpoints) or in the upwards direction (for the right endpoints).

5.1.3. Construction of X. The final cover U , and thus the actual space X, is chosen
by an iterative procedure from the elements of B, so that U ⊂ B. In particular, this
cover is necessarily essential.

The iterative procedure is carried out as follows. We start with a point x0 ∈
Rn as close to the attractor as possible. This point may be obtained for example
by some non-rigorous numerical simulation of the dynamics, but the construction
is in general not particularly sensitive to this choice. We then define an initial
approximation of the cover by letting

U0 := {U ∈ B : x0 ∈ U}.

For each U ∈ U0 we compute an open set f̂(U) as the image of U under f using
interval arithmetic. This is a rigorous upper bound for f(U) in the sense that

f(U) ⊂ f̂(U).

We then define the multivalued map F0 : U0( B by

F0(U) := {B ∈ B : B ∩ f̂(U) 6= ∅}.

At this point we compare U0 with F0(U0) =
⋃

U∈U0 F0(U). If F0(U0) ⊂ U0 then we

let U := U0 and define F := F0|U : U ( U . This is our combinatorial representation
of the map f : X → X on the set X := |U|. If F0(U0) 6⊂ U0 then we define

U1 := U0 ∪ F0(U0)

and we compute the map F1 : U1 ( B as an extension of F0 using interval arith-
metic. Note that only the images of the sets in F0(U0)\U0 have to be computed. Pro-
ceeding again in the same way, we repeat this procedure and we obtain U0, . . . ,Uk,
as well as F0, . . . ,Fk, until we eventually get F(Uk) ⊂ Uk, at which point we define

U := Uk and F := Fk|U : U ( U .

Although this process is guaranteed to terminate, because of the finiteness of B,

the obtained result might be faulty if f̂(U) 6⊂ B for some U ∈ U , as then F is
not a combinatorial representation of f |X . If this happens then we say that the
construction fails, and one has to choose different parameters for the open cover
(Section 5.1.2) and try again. In particular, if the system has an attractor with
a sufficiently large basin of attraction and strong enough convergence, then the
computations should result in a valid map F , provided the set B is taken large
enough, the number p1 is high enough, and the accuracy of computations is good
enough.

Note that if this construction succeeds then the open set X := |U| is contained in
the attraction basin of the attractor, f(X) ⊂ |F(X)| ⊂ X, and F is a combinatorial
representation of f |X : X → X.
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5.1.4. Verification of the properties of F . The outer resolutionR+(F) of the map F
can be easily calculated using interval arithmetic during the computation of Fi,

based on the diameter of a cover of f̂(U) whenever Fi(U) is constructed.
After the combinatorial map F has been constructed, one can verify whether it is

transitive and mixing by a straightforward application of Algorithms 4.8 and 4.10.

5.2. Application to the Hénon map. We now give the specific data involved in
the calculations and discuss in more details the numerical and computational issues
involved.

5.2.1. Constructing a combinatorial representation. We closely follow the general
strategy described in Section 5.1. We choose the rectangular region B in such a way
that an approximation of the attractor found in numerical simulations is contained
in B with some safety margin (about 0.1 at each side). More precisely, we set

a1 :≈ −1.4, w1 :≈ 2.8,

a2 := −0.5, w2 := 1.0,

where the symbol “:≈” indicates that we take a representable number close to the
given decimal number (it is most likely the nearest representable number, depending
on a particular compiler, but it does not really matter). Note that the numbers
which are powers of 2 are representable and thus the actual values of a2 and w2

used in the calculations are exact. We choose κ to be the smallest positive (normal)
number representable in the standard double precision floating point arithmetic,
which is approximately 2 · 10−308.

The number p1 is a parameter of the program that can be changed at each run
(it is set up from the command line each time the program is launched), and we
figured out by trial and error that for p1 := 2,132,419 (for which the corresponding
p2 was taken as 761,578) the algorithm constructs a map F with R+(F) < 10−5.

As an initial point supposedly very close to the attractor we take

x0 :≈ (0.61989426930989, 0.17586130934794).

This point was found in numerical simulations by iterating the origin a little over
100 million times.

The parameters of the Hénon map for which we want to carry out the com-
putations, a = 1.4, b = 0.3, are not representable in the binary floating point
arithmetic. Therefore, we take open intervals containing them, computed in the
program as the quotients 14/10 and 3/10, respectively, with the left endpoints of
the intervals rounded down to the nearest representable numbers, and the right
endpoints rounded up.

For each U ∈ B, which is a product of two open intervals, we calculate f̂(U) by
means of open interval arithmetic, as described in Section 5.1.1, using the formula
for the Hénon map and the intervals containing the parameters a and b, as explained
above.

Instead of constructing subsequent maps Fi, the algorithm is set up in such a
way that it constructs a list U containing the elements of the initial cover U0 (which
covers the initial point x0), and then for each element of this list it computes F(U)
and immediately appends the elements of F(U) which are not yet in the list U to
the end of this list. The algorithm terminates if the end of the list has been reached,
which means that all the elements of F(U) for every U in the list are already in

the list. The algorithm quits with a failure result if f̂(U) 6⊂ B. A sample result of
the constructed set U is illustrated in Figure 5.2.1.
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Figure 3. A sample low-resolution cover of the Hénon attractor
with close-ups of selected details.

5.2.2. Applying the graph algorithms. The constructed cover U and combinatorial
map F are represented in two data structures: an array of pairs of open intervals
which represent the elements of U (that are products of these pairs of intervals),
and a directed graph whose vertices are the indices to this array. After the map
F has been constructed, the memory used for the array representing U is released,
and the graph algorithms are run on the graph representation of F .

In the actual implementation of Algorithms 4.7 and 4.10, instead of using the
recursive call to the subroutines DFS-Visit and tarjan, respectively, we use a
stack version of DFS because of the limitations of some systems which allow for
a limited recursion depth only. In this version, instead of calling the subroutine,
the current parameters are put on the stack and another round of the main loop
is started with new values, with a return from the recursive call corresponding
to taking the previously stored values of the variables from the stack. This is a
standard technique, and one can check the details of its implementation in our
software available at [38].

5.2.3. The cost of the computations. As it should be expected, the time and memory
usage of the computations for the Hénon map heavily depend on the number p1. For
small values of p1, up to some 20,000, the time of computation on a computer with
a contemporary modern processor (Intel R© Xeon R© 5030 2.66 GHz was used in our
computations) should not exceed 10 seconds and use a negligible amount of memory
(up to about 25 MB). The smallest number p1 for which the computations were
successful was pmin

1 = 446 (with the corresponding pmin
2 = 159, and the computed

R+(Fmin) was below 0.05. For smaller values of p1 (and also for a few larger ones)

the algorithm fails because of encountering the situation in which f̂(U) 6⊂ B for
some U in the cover being constructed.

For higher values of p1, we observed that if p1 is increased 10 times then the outer
resolution of the computed map F decreases about 10 times, while the number
of elements in the constructed cover U grows about 20 times, and so do both
the computation time and memory usage (see the actual results available at [38]).
In particular, for the highest tested pmax

1 := 2,132,419 (with the corresponding
pmax
2 = 761,578), a cover Umax consisting of 161,448,094 boxes was constructed,
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and R+(Fmax) was slightly below 10−5. The computation time was about 1 hour
and 17 minutes, out of which the majority was used for the construction of the cover
U and the graph associated to the map F , while running the graph algorithms took
less than 6 minutes.

In these computations we reached the limits of the computer equipment available
to us at the time of writing this paper, but with the development of technology
one can speculate on the possibilities of doing more extensive computations in
the future. Based on our rough estimates, obtaining the resolution 10−6 would
require some 26 hours of processor time and about 360 GB of memory (twice
more than 20 · 9 = 180 GB because of the need to switch from 32-bit to 64-
bit integers in the graph representation, due to the high number of vertices and
edges). Getting down to 10−7 would take over 500 hours (3 weeks) and use some
7 TB of memory. Without switching to distributed computations and probably also
changing the approach (e.g., re-computing the graph on-the-fly instead of storing it
in the memory), these and higher resolutions seem to be still out of reach for many
years to come. However, one might argue that such high precision of the results is
not necessary for real applications, and 10−5 is more than one might require, so
investing in better results does not make sense at this point.

Finally, we would like to point out that the method we have developed is dimension-
independent, and so is the related software available at [38]. However, the number
of elements in a typical cover of a complicated attractor should be expected to grow
considerably faster in higher dimensions with the increase of the target resolution.
This might be a major limitation of the applicability of our method for obtaining
results at very fine resolutions for more complicated systems. In practice, however,
even complicated dynamics in high-dimensional spaces often concentrates around
low-dimensional attractors (like the topological horseshoes), in which case the res-
olutions interesting from the point of view of applications might be still within the
reach of contemporary computers, and we sincerely hope to see such applications
in the future.

6. Final remarks: Finite resolution versus topological and
measurable dynamics

It is tempting to try to see finite resolution properties as approximations of
the “real”, for example topological, properties of the underlying map f : X → X.
In terms of the transitivity and mixing properties considered here, this is partly
justified in the sense that if f is topologically transitive or mixing then it is also
combinatorially transitive or mixing, respectively, at all resolutions (for complete-
ness, we give a formal proof in Appendix B). However our combinatorial notions
of transitivity and mixing are not uniquely defined by this requirement, and to
fully justify the definitions and the idea that we are approximating the topological
properties we would need to show the converse result that if f is combinatorially
transitive or mixing at all resolutions then it is topologically transitive or mixing.
It is possible to obtain such a double implication for certain kinds of properties, see
for instance the comprehensive discussion on precisely this topic in [30]. However,
as mentioned in the introduction, this can be achieved only for “robust” properties
which are persistent under small perturbations of the system. It seems therefore
that in general the finite resolution dynamical properties of a system cannot be
thought of as an approximation of the topological properties, at least not in a naive
sense.

For a time we struggled with this limitation of the theory and perceived it as a
weakness. However, on further reflection we realized that it was in fact arising from
an incorrect understanding of what this approach is actually about. The mistake
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was to assume that the topological point of view is in fact the “real” dynamics and
thus the ultimate goal. In fact, on a fundamental level, the real dynamics, if we really
want to have such a notion, has to be just the dynamics of f thought of as a function
on the set X. Any more sophisticated description necessarily relies on additional
structure and the description then necessarily has to be in a form which is com-
patible with this structure. There are at least two major frameworks or structures
through which, in many cases, one and the same dynamical system can be studied:
the topological and the measurable, which provide in some sense two alternative
points of view on the same dynamics. Each of these points of view comes with its
own definitions, notions, and results which are intrinsically motivated within that
particular framework. A good example, very relevant to the present paper, is pro-
vided by the notions of topological mixing and measure-theoretic mixing. Both of
these notions formalise some intuitive notion of “mixing” within the corresponding
framework, but there is no direct relationship or formal implication between them
in general (some systems may be topologically mixing but not measure-theoretically
mixing and vice versa). Analogously, the notion of mixing which we give in the pa-
per is a combinatorial notion which is very natural in the finite resolution setting.
The relationship of this notion with those of topological and measure-theoretical
mixing is interesting and quite complex, and certainly deserving of further thought,
though beyond the scope of this paper.

In conclusion, we believe that the framework of finite resolution dynamics pro-
vides one of several possible structures through which to study the dynamics. Ac-
cordingly, the definitions and dynamical features of interest should be intrinsically
motivated within the finite resolution framework. Thus finite resolution dynamics
should be seen as an alternative structure, alongside the topological and the mea-
surable, which can contribute to an effective study of a dynamical system from a
different point of view.

Appendix A. Essential covers

Proposition A.1. From any cover it is possible to create an essential one (without
increasing R+, but possibly decreasing the number of elements).

Proof. Let U0 = (U0
1 , . . . , U

0
n) be an ordered cover that is not necessarily essential.

We shall construct a series of gradually “corrected” ordered covers U1, . . . ,Un such
that each of the covers has exactly n elements, Uk = (Uk

1 , . . . ,Uk
n), and each of

the first k elements of Uk either is empty, or satisfies the exclusive ball condition
that appears in Definition 2.5 of an essential cover. Then Un will give rise to an
essential cover after having removed the empty sets. We proceed by induction. Note
that U0 satisfies the inductive assumption. Suppose that Uk has been constructed
for some k < n. Then each Uk

i for i ≤ k is either empty or satisfies the exclusive

ball condition, and then we set Uk+1
i := Uk

i for i ≤ k. Consider Uk
k+1. If it is

empty or satisfies the exclusive ball condition then take Uk+1
i := Uk

i also for all

i = k + 1, . . . , n. If Uk
k+1 ⊂

⋃
i6=k+1 U

k
i then set Uk+1

k+1 := ∅ and Uk+1
i := Uk

i for all

i = k + 2, . . . , n. Otherwise, take any x ∈ Uk
k+1. Since Uk

k+1 is open, there exists

r > 0 such that B(x, r) ⊂ Uk
k+1. Take Uk+1

k+1 := Uk
k+1 and Uk+1

i := Uk
i \ clB(x, r/2)

for i = k+ 2, . . . , n. Note that all Uk+1
i , i = 1, . . . , n, are open sets (although some

might be empty), and
⋃n

i=1 U
k
i =

⋃n
i=1 U

k+1
i , so Uk+1 is an ordered cover of the

same space. Since Uk+1
i = Uk

i for i ≤ k and Uk+1
i ⊂ Uk

i for i > k, the exclusive ball

condition for each nonempty Uk+1
i with i ≤ k follows directly from the one for the

corresponding Uk
i . Moreover, by the construction, Uk+1

k+1 is either empty, or satisfies
the exclusive ball condition with B(x, r/2). �
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Appendix B. Topological mixing implies finite resolution mixing

Proposition B.1. Suppose X is a metric space and f : X → X a continuous map
which is topologically transitive or topologically mixing. Then any combinatorial
representation F of f is transitive or mixing, respectively.

Proof. Recall that f f is transitive if for every two open sets U, V ⊂ X there exists
n > 0 such that f−n(U)∩V 6= ∅. Let F : U ( U be a combinatorial representation of
a transitive map f : X → X. We shall show that F is transitive. Take any U, V ∈ U .
Since f is transitive, there exists n > 0 such that f−n(U) ∩ V 6= ∅. Therefore,
fn(f−n(U)) ∩ fn(V ) 6= ∅. Since fn(f−n(U)) ⊂ U , we have U ∩ fn(V ) 6= ∅. Note
that Fn is a representation of fn, and thus U ∈ Fn(V ). Since the choice of U and
V was arbitrary, this implies that F is transitive.

Similarly, f is mixing if for every two open sets U, V ⊂ X there exists N > 0
such that f−n(U) ∩ V 6= ∅ for all n > N . Let F : U ( U be a combinatorial
representation of a mixing map f : X → X. We shall show that F is mixing. Let
U, V ∈ U . Since f is mixing, there exists N > 0 such that f−n(U) ∩ V 6= ∅ for all
n > N . Fix this n. Note that fn(f−n(U))∩ fn(V ) 6= ∅. Since fn(f−n(U)) ⊂ U , we
have U ∩fn(V ) 6= ∅. Recall that Fn is a representation of fn, and thus U ∈ Fn(V ).
Since the choice of U and V was arbitrary, this proves that F is mixing. �
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[1] Z. Arai, On hyperbolic plateaus of the Hénon map, Experiment. Math., 16 (2007), 181–188.
[2] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database

schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn.
Syst. 8 (2009), 757–789.

[3] Z. Arai and K. Mischaikow, Rigorous computations of homoclinic tangencies. SIAM Jour-

nal on Applied Dynamical Systems, 5 (2006) 280–292.
[4] A. Arbieto and C. Matheus, Decidability of Chaos for some families of dynamical systems,

Found. Comput. Math. (2004), 269–275.

[5] M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. of Math. (2) 133
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[21] T. Kapela and P. Zgliczyński, The existence of simple choreographies for the N-body
problem–a computer-assisted proof, Nonlinearity, 16 (2003), 1899–1918.

[22] O. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math.

Soc. (N.S.) 6 (1982), 427–434.
[23] E. N. Lorenz, Deterministic non-periodic flows, J. Atmos. Sci. 20 (1963), 130–141.

[24] S. Luzzatto, I. Melbourne and F. Paccaut, The Lorenz attractor is mixing, Comm. Math.

Phys. 260 (2005), 393–401.
[25] S. Luzzatto and H. Takahasi, Computable conditions for the occurrence of non-uniform

hyperbolicity in families of one-dimensional maps, Nonlinearity 19 (2006), 1657–1695.

[26] S. Luzzatto and W. Tucker, Non-uniformly expanding dynamics in maps with singularities
and criticalities, Inst. Hautes Etudes Sci. Publ. Math. 89 (1999), 179–226.

[27] S. Luzzatto and M. Viana, Positive Lyapunov exponents for Lorenz-like families with crit-
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