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Abstract. We develop a rigorous computational method for estimating the

Lyapunov exponents in uniformly expanding regions of the phase space for one-

dimensional maps. Our method uses rigorous numerics and graph algorithms
to provide results that are mathematically meaningful and can be achieved in

an efficient way.

1. Introduction and statement of results

The theory of one-dimensional dynamical systems has seen huge growth over the
last couple of decades and is undoubtedly one of the most subtle and sophisticated
current areas of research. The last few years have seen the resolution of some of the
main classical problems in the area, such as the hyperbolicity conjecture [11]. The
fact remains, however, that the deepest results are also generally the most abstract
ones, often providing existence or genericity results of little use when studying a
specific system or when trying to obtain explicit quantitative information. The
aim of this paper is to establish some computational methods to obtain rigorous
and explicit numerical bounds for certain dynamical quantities of great relevance
and importance in the theory of one-dimensional dynamics. The key idea of our
approach is to convert the problem into the computation of some quantities for a
weighted directed graph constructed from a given family of dynamical systems, for
which various graph algorithms work very effectively.

1.1. Lyapunov exponents. A key property of interest in many arguments in
the dynamical systems theory is that of hyperbolicity, or non-zero Lyapunov expo-
nents [4]. In dimension one the Lyapunov exponent at a point x is simply defined
as

λ(x) = lim inf
n→∞

log
∣∣Dfn(x)

∣∣1/n.
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There is an extensive literature on computational methods for estimating Lyapunov
exponents, ranging from basic derivative calculations to relatively sophisticated ar-
guments, but the asymptotic nature of the Lyapunov exponent makes it intrinsically
difficult, if not in many cases impossible, to estimate it accurately by computational
methods. This is the case, for example, if the orbit of x accumulates onto a critical
point (or, in the higher-dimensional case, if the map f exhibits tangencies between
stable and unstable manifolds) as then even the sign of the Lyapunov exponent is
impossible to establish within a finite number of iterations.

It turns out, however, that as long as we exclude this case, we can obtain some
rigorous numerical estimates. We consider the following setting. Let I be an
interval and ∆ ⊂ I a finite union of open subintervals having disjoint closures and
containing all the critical points of f . We suppose that f : I \∆→ I is a C1 map.
We are interested in obtaining some uniform expansivity estimates for pieces of
orbits outside ∆ in the following form:

Statement 1. There exist constants C, λ > 0 such that for every x and for every n
such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1 we have

(1)
∣∣Dfn(x)

∣∣ ≥ Ceλn.
This statement is always true under the assumptions that the map f is at least

C2 with all periodic orbits hyperbolic repelling, and that ∆ is a neighbourhood of
the critical points [15, 16, 17]. This result has had huge applicability and scope
in the “abstract” theory of one-dimensional dynamics; see e.g. [16] and references
therein. It should be noted, however, that the assumption of all hyperbolic periodic
points being repelling is non-trivial and in practice unverifiable for specific maps.
In addition to this, the theorem itself does not give any indication of the actual
values of the constants λ and C and their relationship to the size of the critical
neighbourhood ∆ (although, remarkably, in certain cases it can be shown that the
exponent λ is independent of the size of ∆ [19]).

In this paper we are interested in proving Statement 1 for some specific maps f
and specific choices of critical neighbourhoods ∆, and in obtaining rigorous explicit
numerical bounds for the constants C and λ. Our work is in part motivated by
[12] where this kind of estimate appears, and one of our goals is to contribute to
the development of a computational version of Jacobson-Benedicks-Carleson type
theorem [5, 9] in the future. Therefore, we are also interested in the following
statement closely related to Statement 1:

Statement 2. There exists a constant λ0 > 0 such that for every x and every n
such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1 and either x ∈ f(∆) and/or fn(x) ∈ ∆
we have

(2)
∣∣Dfn(x)

∣∣ ≥ eλ0n.

The difference between Statements 1 and 2 is that in Statement 2 we have some
additional information about the piece of orbit under consideration in the form
of the location of either its initial or its final point. The conclusion is a signif-
icantly stronger expansivity estimate without the (possibly small) multiplicative
constant C.

Before discussing the details of our strategy and methodology, we mention some
recent related work on the subject of the verification of hyperbolicity. In particular,
computational methods have been used by Tucker [25] as part of his groundbreaking
work on the verification of hyperbolicity for the return map of the Lorenz attractor,
by Arai [1, 2] and by Hruska [8] for the real and complex Hénon map family.
Interestingly, all these approaches are very different, with [1, 2] using ideas from
the Conley index theory, while [8] and [25] in different ways more or less explicitly
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constructing a family of invariant conefields. It is not completely clear to us to what
extent these methods actually give explicit bounds for the hyperbolicity constants
and it would certainly be interesting to see if some combinations of the methods
given there with ours might lead to some results in this direction.

1.2. Rigorous hyperbolicity computations. The main result of this paper is
the development of a combination of procedures for the explicit verification of State-
ments 1 and 2 for arbitrary maps. More specifically, we develop a fully fledged
computer-run algorithm with the following input and output.

Input: The map f : I → I and the region ∆ ⊂ I. In detail:
• the bounded interval I ⊂ R,
• the region ∆ ⊂ I defined as a finite union of open intervals,
• a method for computing, for each interval J ⊂ I, a (possibly small) interval

which covers f(J),
• a method for computing, for each pair of intervals J ⊂ I \ ∆, K ⊂ I, a

(possibly tight) lower estimate for log
∣∣f ′(x)

∣∣ valid for all x ∈ J such that
f(x) ∈ K.

There are also several other “auxiliary” parameters related to the level of preci-
sion of the computations which can be thought of as part of the input, too. The
computations can therefore be run either in “simple” mode in which these additional
parameters are set to some default values, or in “advanced” mode in which they
can be modified to increase the efficiency of the calculations taking into account
specific features of the map under consideration.

Output: The constants C, λ, λ0 with which Statements 1 and 2 hold true, or
“fail” if these statements cannot be verified. More precisely, the algorithm returns
the largest possible constant λ ∈ R for which it is able to verify that for every
x ∈ I and for every n > 0 such that f i(x) /∈ ∆ for all i = 0, . . . , n − 1 the
inequality (1) holds true for some C > 0 which is also computed explicitly. If the
constant λ returned by this algorithm is not positive then this situation is called
“failure”, because Statement 1 requires λ > 0. The same explanation applies to the
computation of λ0 for Statement 2.

We emphasize the simplicity of applying our computational procedure (the non-
trivial mathematics and computer algorithms can all remain in the background
and fully hidden from view for the user) as well as the wide scope of its applicabil-
ity. Indeed, we have no particular assumptions on f except that it should be C1

outside ∆. Obvious classes of maps to which we could therefore apply our compu-
tations are polynomial maps, including the well known quadratic family, but also
maps with discontinuities and/or unbounded derivatives. The maps in Figure 1

Figure 1. Interval maps with critical points, discontinuities
and/or unbounded derivatives.

are all related to return maps for smooth flows and have all been studied in the
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context of parameter exclusion arguments [13, 14, 20, 21]. Statements 1 and 2 are
verified there analytically in certain quite specific parameter regions and play a
crucial role in the arguments. The computational techniques given here could be
useful in extending these arguments to other parameter regions and in obtaining
some more explicit estimates for the measure of the good parameter set in a similar
way to [12].

In this paper we limit ourselves to some applications to the quadratic family
since, as discussed above, applications to other maps are conceptually no more
difficult. Thus we compute the constants C and λ for several thousand parameters
of the well known quadratic family. We discuss the results at length in Section 5;
to give a feeling for the kind of numbers we rigorously obtain, we give here just a
small sample.

Theorem 1. Let fa(x) = x2−a and let ∆ = (−δ, δ) denote a neighbourhood of the
critical point c = 0. Then Statements 1 and 2 hold true for the following parameters
a with the following values of δ, C, λ, λ0:

a δ C λ λ0

1.7 0.1 0.1358 0.3864 0.3864
2 0.1 0.1004 0.6889 0.6886
2 0.01 0.0113 0.5643 0.5643
2 0.001 0.0015 0.2358 0.2358

[1.99, 2] 0.1 0.1061 0.6331 0.6330

The values of a and δ in this theorem should be understood as computer rep-
resentations of the decimal numbers listed in the table. The computed numbers
C, λ and λ0 were slightly higher than the ones listed in the table, and have been
rounded down to make sure that the statements hold true for the actual decimal
numbers provided.

We have included three different calculations for the parameter value a = 2
to highlight the effect of choosing increasingly smaller critical neighbourhoods on
the computed values of λ and λ0. Moreover, we remark that for a = 2 we can
actually calculate the values of these constants analytically and it turns out that
λ = λ0 = ln 2 = 0.6931 . . . independent of δ. The computations give quite a good
approximation to this value for δ = 0.1 and increasingly bad as δ is chosen smaller.
As it will be discussed in Section 5 below, this is just due to working with a fixed
level of accuracy (more precisely, a fixed number of partition elements) and the
achieved values can be made to approximate ln 2 arbitrarily well by increasing this
accuracy. In the last line of the table, we show constants which are valid for all
a ∈ [1.99, 2]. It is a remarkable fact that this result was obtained in just one run
of the algorithm, which was possible thanks to the use of interval arithmetic (see
Section 4.1).

We emphasize that these results do not depend in any way on the classical
existence proofs for the constants C, λ and thus, in particular, do not involve the
verification of any assumptions used in those arguments, but follow instead by direct
rigorous computation.

1.3. Overview of the paper and additional remarks. The computations we
carry out are fundamentally based on a set of graph optimization algorithms. In
Section 2 we explain how to encode certain features of the dynamics in a weighted
digraph and how the problem of finding a lower bound for the expansion exponent
can be reformulated in terms of a problem of calculating mean weights of certain
paths in the graph. In Section 3 we discuss in detail the algorithms and techniques
used to estimate these quantities. In Section 4 we discuss the more strictly compu-
tational part of the procedure and explain how the computer code is programmed
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in order to carry out the required calculations. Finally, in Section 5 we discuss
the result of applying these computations to various parameters in the quadratic
family.

The source code of the software introduced in Section 4, as well as detailed
results of the computations referred to in Section 5 are available at the website
http://www.pawelpilarczyk.com/unifexp/.

2. Derivatives and weighted digraphs

The basic idea of our approach is to reduce the problem to one of bounding the
mean weights of paths in certain weighted digraphs (directed graphs) related to the
map f under consideration. In this section we introduce some notation related to
graphs, define what it means to represent a map by a graph, and reformulate the
problem of expansion in the language of graphs.

2.1. Weighted digraphs. We start with some definitions and notation. Through-
out this paper G = (V,E,w) will denote a weighted finite digraph, where V denotes
the finite set of vertices, E ⊂ V ×V is the set of edges, and w : E → R is the weight
function.

The set of paths in G is denoted by P(G), where a path is a nonempty finite
sequence of edges

Γ = (e1, . . . , en) such that ej = (v0
j , v

1
j ) ∈ E and v1

j = v0
j+1.

The vertex v0
1 is called the starting vertex of Γ, and v1

n is called the ending vertex
of Γ. The length of the path Γ is n, the number of edges in the sequence, and
denoted by |Γ|. A path Γ′ is called a subpath of Γ if Γ′ is a subsequence of Γ
which consists of consecutive edges, that is, Γ′ = (ek, . . . , el) for some k, l such that
1 ≤ k ≤ l ≤ n. We say that the subpath Γ′ of Γ is proper if |Γ′| < |Γ|. The path
Γ is called a cycle if v0

1 = v1
|Γ|. A path is called simple if it does not contain a

subpath which is a cycle (in particular, no cycle is a simple path). A cycle is called
simple if it does not contain any proper subpath which is a cycle. The set of cycles,
simple paths, and simple cycles in G will be denoted by C(G), S(G), and SC(G),
respectively.

Figure 2. The decomposition of the path Γ = (e1, . . . , e17)
into the simple path Γ0 = (e1, e6, e17) and simple cycles
Γ1 = (e2, e3, e4, e5), Γ2 = (e7, e8, e9, e10, e16), and Γ3 =
(e11, e12, e13, e14, e15). Note that e10 = e15.

It is an elementary fact that every path can be decomposed into a simple path and
a finite number of simple cycles, as illustrated in Figure 2. More precisely, if Γ =
(e1, . . . , en) is a path then there exists either a simple path Γ0 = (ej(0,1), . . . , ej(0,k0))
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(if Γ is not a cycle) or Γ0 = ∅ (if Γ is a cycle) and a finite number of simple cycles
Γi = (ej(i,1), . . . , ej(i,ki)), where i = 1, . . . , k for some k (possibly k = 0), such that
each Γi is a subsequence of Γ and each index {1, . . . , n} appears exactly once in all
the sequences of indices

(
j(i, l)

)
l=1,...,ki

over i = 0, . . . , k.
The weight and mean weight of a path Γ = (e1, . . . , en) ∈ P(G) are defined by

W (Γ) =
n∑
j=1

w(ej) and W (Γ) =
W (Γ)
n

,

respectively.

2.2. Graph representation of f . Recall that we are assuming that f : I \∆→ I
is a C1 map, where I ⊂ R is an interval and ∆ is a finite union of open subintervals
of I having disjoint closures and containing Crit(f), the set of all critical points
of f .

A finite collection of closed intervals I = {Ij | j = 1, . . . ,K} is an f -admissible
cover of I\∆ if int(Ii∩Ij) = ∅ for i 6= j, Ij∩Crit(f) = ∅ for all j, and I\∆ ⊆

⋃K
j=1 Ij .

Given an f -admissible cover I of I\∆, we call the weighted digraphG = (V,E,w)
a representation of f on I \∆ provided that:

(a) V = I ∪ {cl ∆};
(b)

{
e = (I1, I2) ∈ I × V | f(I1) ∩ I2 6= ∅

}
⊂ E

(c) For each e = (I1, I2) ∈ E,

w(e) ≤ inf
{

log
∣∣Df(x)

∣∣ : x ∈ I1 ∩ f−1(I2)
}

Representing the map f on I \∆ by a weighted digraph G allows us to reduce
the problem of estimating the minimum accumulated derivatives to computing the
weights of certain paths in G. Observe the following straightforward relationship
between the weight of a path and the derivative along points whose orbit is described
by the path. Given a point x ∈ I \∆ and a path Γ = (e1, . . . , en) ∈ P(G) such that
ej = (Ij−1, Ij) and f j(x) ∈ Ij for all j = 0, . . . , n, we have

(3) log
∣∣Dfn(x)

∣∣ =
n−1∑
j=0

log
∣∣Df(f j(x)

)∣∣ ≥W (Γ).

Throughout this paper, we will make use of the following quantity. The minimum
mean weight over all cycles in G = (V,E,w) is

µ(G) :=

{
min

{
W (Γ) : Γ ∈ C(G)

}
if C(G) 6= ∅

+∞ if C(G) = ∅

=

{
min

{
W (Γ) : Γ ∈ SC(G)

}
if C(G) 6= ∅

+∞ if C(G) = ∅

Note that since G is a finite graph, SC(G) is a finite set, and therefore, the minimum
is attained if C(G) 6= ∅. For our studies, µ(G) <∞ for any graph representation of
the map f under consideration.

We say that a path Γ = (e1, . . . , en), where ei = (I0
i , I

1
i ), begins in ∆ or ends

in ∆ if f(∆)∩ I0
1 6= ∅ or I1

n = cl ∆, respectively. Let P∆(G) denote the set of paths
that begin or end in ∆. Define

µ∆(G) := inf
{
W (Γ) : Γ ∈ P∆(G)

}
.
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2.3. Estimating derivatives using graphs. For given λ ∈ R and G = (V,E,w),
define

κ(λ,G) := exp
(

min
{
W (Γ)− |Γ|λ : Γ ∈ S(G)

})
.

Proposition 1. Let G be a weighted finite digraph that is a representation of f on
I \∆. If λ ≤ µ(G) and C ≤ κ(λ,G), then∣∣Dfn(x)

∣∣ ≥ Ceλn
for any n > 0 and x ∈ I such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1.

Proof. The assumptions on C and λ can be restated as follows:

W (Γs)− |Γs|λ ≥ log(C) for all Γs ∈ S(G)

and
W (Γc)− |Γc|λ ≥ 0 for all Γc ∈ C(G).

Given a path Γ ∈ P(G), consider the decomposition of Γ into Γs ∈ S(G) ∪ {∅}
and Γic ∈ SC(G), i = 1, . . . , k for some k ≥ 0, as explained in Section 2.1. Obviously,
|Γ| = |Γs|+

∑k
i=1 |Γic|, where |∅| := 0 and W (∅) := 0. Therefore,

(4) W (Γ) = W (Γs) +
k∑
i=1

W (Γic) =
(
W (Γs)− |Γs|λ

)
+

+
k∑
i=1

(
W (Γic)− |Γic|λ

)
+ |Γ|λ ≥ log(C) + |Γ|λ.

Finally, consider a point x ∈ I \∆ such that f i(x) 6∈ ∆ for all i = 1, . . . , n − 1.
Then there exists a path Γ = (e1, . . . , en) ∈ P(G) where ej = (Ij−1, Ij) such that
f j(x) ∈ Ij . The result follows from (3) and (4). �

Proposition 2. Let G be a weighted digraph that is a representation of f on I \∆.
If λ0 ≤ µ∆(G), then ∣∣Dfn(x)

∣∣ ≥ eλ0n

for any n > 0 and x ∈ I such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1, and x ∈ f(∆)
or fn(x) ∈ ∆.

Proof. Given x ∈ I \∆ such that f i(x) /∈ ∆ for all i = 0, . . . , n− 1, and x ∈ f(∆)
or fn(x) ∈ ∆, there exists a path Γ = (e1, . . . , en) ∈ P∆ where ej = (Ij−1, Ij) such
that f j(x) ∈ Ij . By (3),

log |Dfn(x)| ≥W (Γ) = W (Γ) |Γ| ≥ µ∆(G) |Γ| ≥ λ0|Γ| = λ0n,

which proves the Proposition. �

2.4. Refining the representation of f . Let G = (V,E,w) and G′ = (V ′, E′, w′)
be representations of f on I \ ∆. We say that G′ is a refinement of G if there
exists a function π : V ′ → V such that J ⊂ π(J) for all J ∈ V ′, and for every
e′ = (I ′1, I

′
2) ∈ E′ we have e :=

(
π(I ′1), π(I ′2)

)
∈ E and w′(e′) ≥ w(e).

Proposition 3. Let G and G′ be representations of f on I\∆. If G′ is a refinement
of G then µ(G′) ≥ µ(G).

Proof. For each cycle Γ′ = (e′1, e
′
2, . . . , e

′
n) inG′, the path π(Γ′) :=

(
π(e′1), π(e′2), . . . , π(e′n)

)
is a cycle in G with W (Γ′) ≥W

(
π(Γ′)

)
. Therefore,

µ(G′) = min
{
W (Γ′) : Γ′ ∈ C(G′)

}
≥ min

{
W (π(Γ′)) : Γ′ ∈ C(G′)

}
≥

≥ min
{
W (Γ) : Γ ∈ C(G)

}
= µ(G),

which ends the proof. �
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It is reasonable to expect that if one applies the procedure described in Section 4
for the construction of a representation G of f on I\∆ with an f -admissible cover I,
and another representation G′ using a refinement I ′ of I, then G′ should be a
refinement of G, and Proposition 3 says that in that case the expansion exponent
computed for G′ will be better than the one computed for G.

3. Mean weight algorithms

The results of Section 2.3 reduce the problem of determining expansion estimates
to the computation of mean weights of certain paths. More precisely, given a
weighted digraph G = (V,E,w) which is a representation of some f on I \ ∆
(as defined in Section 2.2), we need to be able to compute µ(G), µ∆(G), and
κ(λ,G). In this section, we describe the algorithms that we use to determine these
quantities. We also provide a measure of the complexity of each algorithm by giving
the associated running time.

The running time measures the order of the number of required primitive oper-
ations (such as addition and multiplication) as a function of the size of the input,
here given by |V |, the size of the vertex set, and |E|, the size of the edge set. We
use the notation O

(
Ψ(|V |, |E|)

)
to indicate that there exist constants c, n0 > 0

such that for any graph G = (V,E,w) for which |V |, |E| ≥ n0, the number of
operations Φ(G) of the algorithm applied to the graph G satisfies the inequality
Φ(G) ≤ cΨ(|V |, |E|). This gives an asymptotic upper bound for the worst case
running time. For a more detailed explanation of this notation and of running time
in general, the reader is referred to [6, §3.1]. For our computations, |V | is fixed
using a computational parameter K specifying a partition size, and |E| depends on
the size of V and on the expansion of the map f relative to the partition giving V .
This will be described in more detail in the next section.

3.1. Computation of µ(G). The constant µ(G) is obtained by a straightforward
application of Karp’s Algorithm [10] which computes the minimum mean weight of
any cycle in a weighted digraph. Its running time is O

(
max{|V | |E|, |V |2}

)
.

3.2. Computation of κ(λ,G). The Floyd-Warshall Algorithm [6, §25.2] and John-
son’s Algorithm [6, §25.3] both find the minimum weights of paths between all pairs
of vertices in a weighted digraph, and thus, applied to the graph G′ = (V,E,w′)
where w′(e) = w(e)−λ, provide a number that does not exceed κ(λ,G). They have
different running times, O

(
|V |3

)
for Floyd-Warshall and O

(
|V |2 log |V | + |V | |E|

)
for Johnson and thus may be more or less efficient depending on the specific situ-
ation. Johnson’s Algorithm is generally more efficient for sparse graphs, which is
the case in our applications. Note that both these algorithms require that G does
not have any cycle whose weight is negative.

3.3. Computation of µ∆(G). The specific computation required for µ∆(G) is less
standard. Following the idea of Karp’s Algorithm, we formulate an algorithm which
computes the minimum mean weight µ1(G,V0) of paths of length up to |V |−1 whose
starting vertex belongs to the given set V0 ⊂ V . To compute the minimum mean
weight µ2(G,V0) of paths of length up to |V |−1 whose ending vertex belongs to V0,
one can apply this algorithm to the transposed graph GT which is obtained from
G by reversing the direction of edges.

First of all, we compute the functions Fk(v) for each v ∈ V and k = 1, . . . , |V |−1,
which are defined as the minimum weight of any path of length k whose starting
vertex belongs to V0 and ending vertex equals v, or we set Fk(v) := ∞ if no such
path exists. These functions are computed using the recursive formula

Fk(v) = min
(u,v)∈E

(
Fk−1(u) + w(u, v)

)
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for k = 1, . . . , |V |, with the initial condition F0(v) =∞ for v ∈ V \V0, and F0(v) = 0
for v ∈ V0. More precisely, we have the following

Algorithm 1.
for all v ∈ V , k = 0, . . . , |V | − 1 do Fk(v) :=∞;
for all v ∈ V0 do F0(v) := 0;
for k := 1 to |V | − 1 do

for all (u, v) ∈ E do
Fk(v) := min

(
Fk(v), Fk−1(u) + w(u, v)

)
;

return min{Fk(v)/k such that v ∈ V and k = 1, . . . , |V | − 1}.

As it can be clearly seen from counting the arguments of the “for” loops, as well
as the number of elements in the set whose minimum is computed in the last line,
the running time of Algorithm 1 is O

(
max{|V | |E|, |V |2}

)
.

We use this algorithm to compute µ1(G,V0), where V0 ⊂ I is some set of intervals
whose union covers f(cl ∆), and to compute µ2(G, {cl ∆}). Together with µ(G),
these two numbers suffice to find a lower estimate for µ∆(G), as it is claimed in the
following

Proposition 4. Let V0 ⊂ I be as defined above. Then

(5) min
{
µ(G), µ1(G,V0), µ2(G, {cl ∆})

}
≤ µ∆(G).

Proof. Let Γ be any path in P(G) which begins in ∆ or ends in ∆. Since the union
of V0 covers cl ∆, the starting vertex of Γ belongs to V0 (in the former case) or
its ending vertex equals cl ∆ (in the latter case). Consider the decomposition of Γ
into a simple path Γs (possibly Γs = ∅) and simple cycles Γic, i = 1, . . . , k for some
k ≥ 0. If Γs 6= ∅ then the starting vertex of Γs belongs to V0 or the ending vertex
of Γs equals cl ∆. Moreover, |Γs| ≤ |V | − 1, and thus

W (Γs) ≥ min
{
µ1(G,V0), µ2(G, {cl ∆})

}
.

where W (Γs) := +∞ if Γs = ∅. As for the simple cycles, W (Γic) ≥ µ(G). Obviously,

W (Γ) ≥ min
{
W (Γs),W (Γic), i = 1, . . . , k

}
.

This proves (5) and thus Proposition 4. �

4. Computations

For the sake of clarity, in this section we provide an outline for the principle
procedures and tools employed in our computations. We purposely provide an
outline as opposed to specific details for the following reason: While we believe the
strategy to be problem independent, the optimal numerical methods do depend on
the particular family of nonlinear functions being studied. In particular, we cover
the following topics:

(1) the use of interval arithmetic to ensure the mathematical validity of our
computations;

(2) a procedure for defining an admissible cover I of I \∆;
(3) a procedure for constructing a weighted directed graph;
(4) the computation of the constants λ, C, and λ0, and a proof that Statements

1 and 2 are satisfied for these constants;
(5) an interface for running series of computations in a concurrent way on

multiple machines.
The software developed for the computations described in this section has been

programmed in the object-oriented C++ programming language for optimal perfor-
mance and expandability. We outline its features and capabilities in the subsections
below.
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4.1. Interval arithmetic. The software does rigorous computations using interval
arithmetic (see [18] for a comprehensive introduction). Since computers can only
store limited precision rational numbers, the idea of interval arithmetic is to repre-
sent any real number by an interval with the computer-representable rational ends
that contains the real number in question. We then replace arithmetic operations
on real numbers with the corresponding operations on intervals whose result is an
interval which contains all possible results of the operation on any arguments from
the argument intervals, e.g.,{

x+ y : x ∈ [a, b], y ∈ [c, d]
}
⊂ [a, b] 〈+〉 [c, d].

Interval arithmetic is used to compute the images of intervals by the map f , as well
as in the graph algorithms to compute rigorous lower estimates for the mean weights
of paths. Note that in the graph algorithms, usually only one end of the interval
needs to be computed, which simplifies the computations to using the arithmetic
operators with controlled direction of rounding (upwards or downwards). Also, the
comparison of intervals with the “<” and “>” operators must be done by comparing
their lower or upper ends only, depending on whether we compute the minimum or
the maximum of weights.

4.2. Defining an admissible cover. Recall that I ⊂ R is an interval and ∆ is
defined as a finite union of open subintervals of I. Assume that the values of the
endpoints of ∆ lie in the set of representable numbers used in the above mentioned
interval arithmetic. For simplicity, in the software which accompanies this paper,
∆ is defined as

⋃k
i=1(ci − δ, ci + δ), where Crit(f) = {c1, . . . , ck} and δ > 0, but

this form of ∆ is not required by the theory. Moreover, the actual endpoints of the
intervals which define ∆ taken for the computations are rounded to some possibly
close representable numbers.

In principle, an admissible cover I can be chosen to be any finite cover of I \∆
where the endpoints of the intervals are representable numbers. In practice, the
simplest way to define I is to fix some number K of elements and partition I \∆
into K essentially equal subintervals. We use this partition for the computations
described in Section 5. However, we note that for certain particular maps estimates
can be significantly improved by having a non-uniform partition.

4.3. Constructing a weighted digraph. We now describe how to construct a
graph representation G = (V,E,w) for a parameterized family of maps, f : I×Ω→
I, where Ω is a closed interval and f ∈ C1

(
(I \ ∆) × Ω

)
with Crit(fa) ⊂ ∆ for

all a ∈ Ω. Note that here we assume that ∆ is independent of the parameter
a ∈ Ω. In practice, this is a reasonable assumption if we choose the parameter
interval small enough so that the critical points of f do not go out of the fixed ∆.
For a larger parameter interval, we may decompose it into small enough parameter
subintervals which satisfy this assumption, and repeat the computations for each
of these parameter subintervals.

4.3.1. The vertices. We suppose an f -admissible cover I := {I1, . . . , Ik} of I \ ∆
has been fixed. These intervals together with cl ∆ serve as the vertices in G, that
is, we define

V := I ∪ {cl ∆}.

4.3.2. The edges. For each Ii ∈ I we use a combination of analytic bounds and
interval arithmetic to compute an interval denoted by F (Ii) which is an outer
estimate for fa(Ii) for all a ∈ Ω, that is,

(6) f(Ii,Ω) ⊂ F (Ii).
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Define
E :=

{
(Ii, J) ∈ I × V | F (Ii) ∩ J 6= ∅

}
.

4.3.3. The weights. For e = (Ii, J) ∈ E, choose a closed interval L(e) ⊂ Ii such
that {x ∈ Ii | f(x,Ω)∩J 6= ∅} ⊂ L(e) (note that L(e) = Ii is an admissible choice).
Using a combination of analytic bounds and interval arithmetic, we compute a
representable number b

(
L(e)

)
such that

(7) b
(
L(e)

)
≤ min

{
log
∣∣Dxf(x, a)

∣∣ : x ∈ L(e), a ∈ Ω
}

Then we define
w(e) := b

(
L(e)

)
.

4.4. Computing the Constants. Having constructed G = (V,E,w), we run
Karp’s Algorithm (Section 3.1) in interval arithmetic to obtain a lower bound µ≈
for µ(G). Define

(8) λ := µ≈.

We now construct a new weighted digraph G′ = (V,E,w′) where w′(e) is com-
puted as the largest representable number not exceeding w(e)−λ. Define logC to be
the output of running either the Floyd-Warshall Algorithm or Johnson’s Algorithm
(Section 3.2) on G′ in interval arithmetic.

Define λ0 to be the minimum of the number λ and the numbers µ1(G,V0) and
µ2(G, {cl ∆}) computed with Algorithm 1 applied to G = (V,E,w) in interval
arithmetic.

Theorem 2. Let a ∈ Ω, and define fa := f(·, a) : I \∆ → I. Then Statements 1
and 2 are satisfied for fa using the constants λ, C, and λ0.

Proof. As indicated in Section 4.2, we have constructed an admissible cover of
I \∆ for fa. Following the procedures of Sections 4.3.1, 4.3.2, and 4.3.3, we have
computed G = (V,E,w) which is a representation of f on I\∆; indeed, the inclusion
(6) implies (b) in the definition of a representation, and the inequality (7) implies
(c) in that definition.

Since λ ≤ µ(G) and C ≤ κ(λ,G), Statement 1 follows from Proposition 1.
Similarly, λ0 ≤ µ∆(G), and hence Statement 2 follows from Proposition 2. �

Remark. In practice, the numbers w′(e) computed for e ∈ E by the computer as
w(e) − µ≈ with downwards rounding to the nearest representable number might
be so small that negative-weight cycles might occur in the graph G′ (especially
since the weights of paths are also computed as sums of weights of edges with
the rounding direction set to “downwards”), which causes both the Floyd-Warshall
Algorithm and Johnson’s Algorithm to fail. Therefore, in order to ensure successful
computation of C, instead of taking the constant λ defined by (8), λ is defined as
µ≈ decreased by 0.000000001% of its absolute value, that is, λ := µ≈ − 10−11|µ≈|.
This tiny decrease turns out to be large enough for our computations to alleviate
the problem of spurious negative cycles, but it cannot be ruled out that for some
other cases a slightly larger decrease of λ might be necessary.

4.5. Running the software on multiple machines. In order to accomodate
the need for running the computations for many parameter intervals Ω 3 a for
the family fa, the software uses an elementary network communication interface
based on the TCP/IP sockets in order to allow one to spread the computations
over several machines (a local network or a computer cluster, for example). A
centralized model of concurrent computations is used, with one process designated
as a coordinator who iterates the interval of parameters, and all the other processes
designated as workers who do the computations for each specific value or subinterval
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of the parameter a obtained from the coordinator. The task of the coordinator is
also to store the results of computations obtained from workers.

5. Applications and Discussion

As an example application of the algorithms introduced in this paper, we consider
the well-known family of unimodal maps fa : I → I given by

fa(x) = x2 − a,
where I = [−2, 2], a ∈ [1.7, 2], and ∆ = (−δ, δ) for some small δ > 0. First we fix
the parameter value a = 2 and carry out several computations and comparisons by
varying δ, the size of ∆, and K, the number of subdivisions of I \∆. Then we fix
δ and K and carry out the computations for a few thousand equally spaced (up to
the rounding precision) parameter intervals which fill the parameter range under
consideration.

Note that for the map fa, the interval L(Ii, J) in (7) can be taken as f−1
a (J)∩ Ii

easily computed in interval arithmetic, which gives a nearly optimal weight func-
tion w.

We would like to state at this point that applying our method to other maps as
described in Section 1.2 is no more difficult than to the quadratic family. Therefore,
we believe that discussing the well known family of maps would allow the reader to
confront our results with the results established in the literature, and also to expose
both the power and the weaknesses of our approach. The variety of dynamical
behaviours observed for the interval of parameters which we consider (from a stable
periodic orbit to a strange attractor) allows for a comprehensive test of our method.

5.1. The parameter value a = 2. The map fa for the parameter value a = 2 is
a particular example of a Chebyshev polynomial and as such is smoothly conjugate
to a piecewise affine expanding map (see, for example, [12]). This property was
exploited by Ulam and von Neumann [26] proving that f2 exhibits stochastic-like
behaviour; indeed, this was the first case of such dynamical behaviour being proven
in the quadratic family. The special conjugacy can also be used to prove Statements
1 and 2 analytically with λ = λ0 = ln 2 = 0.6931 . . . for any δ > 0. We now check
how close our methods get to this expected value.

5.1.1. Computation of λ for various sizes of ∆. Figure 3 shows the computed values
of λ for a few thousand different sizes of the critical neighbourhood ∆ = (−δ, δ) and
a uniform admissible cover I constructed by dividing I \∆ into K essentially equal
subintervals with K = 5000. The actual lengths of the subintervals may slightly
differ because of rounding their endpoints to representable numbers.

The estimated value of λ decreases monotonically with decreasing δ (although we
emphasize that the horizontal axis is a logarithmic scale) even though the theoretical
value of λ does not. This is naturally to be expected as both the number and size
of the partition elements giving rise to the graph remain constant. Increasing the
“resolution” of the calculations by increasing the number of partition elements, and
thus also descreasing their size, gives improved estimates as shown below.

5.1.2. Computation of λ for various values of K. We now consider a fixed critical
neighbourhood ∆ = (−δ, δ) with δ = 0.01, and compute λ with a uniform admissible
cover I with K elements for different values of K (see Figure 4).

As it should be expected, the results improve with larger K. Values of K between
4,000 and 6,000 already give relatively good estimates, and choosing K near 8,000
provides values of λ already close to the true value of ln 2.

For a fixed value of K, the computed values of λ can be improved significantly
by using a non-uniform partition which has more and smaller elements of I in the
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Figure 3. Computed values of λ for the map fa with a = 2,
K = 5000, and various values of δ > 0. The horizontal scale
represents − log δ.
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Figure 4. Computed values of λ for the map fa with a = 2.0,
δ = 0.01, and several different values of K.

large derivative regions, i.e., close to the extreme points of the domain I, and which
has relatively larger and fewer elements near the critical region ∆. Figure 5 shows
a comparison between the values of λ computed using these two partitions.
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Figure 5. Computed values of λ with the uniform partition (lower
curve) and a non-uniform partition (upper curve).

Although at first sight this may appear counter-intuitive, it is easy to see that
it is actually natural to have smaller partition elements where the derivative is
large and not where the derivative is small. Indeed, this approximates better the
real dynamics and thus picks up more of the expansion which in the real map is
essentially dominated by the time that orbits spend in the regions of large derivative.

Another strategy for defining a non-uniform partition might be to have smaller
intervals close to a fixed number of initial iterates of the critical point. This strategy
is justified by the expectation that the derivative should gain exponential growth
along the critical orbit, and keeping intervals small prevents from losing it.

The question remains, however, how to determine the proportions between the
sizes of intervals in the regions where they should be small and where they should
be wide. Our experiments with the quadratic map at different values of a indicate
that there is no simple answer to this question, and finding an optimal strategy
appears to be problem-specific.

5.1.3. The time of computation of the constant C. Figure 6 shows a graph of the
computer processor time required to compute the constant C using Johnson’s Algo-
rithm and Floyd-Warshall Algorithm. For large values of K, Johnson’s Algorithm
performs significantly better due to its better asymptotic time complexity. Al-
though it cannot be seen from the picture, the opposite is true for small values
of K, such as K = 400.

5.2. Global parameter estimates. We now want to take advantage of the power
of multiple computers to compute lower bounds for λ and λ0 for several thousand
parameter intervals of essentially the same length (up to rounding their endpoints
to representable numbers) which fill the parameter interval [1.7, 2]. As discussed
above, the estimates improve with the number K of intervals in I, and for the
purpose of this calculation we fix the value K = 5000.
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Figure 6. Time (in seconds) required to compute the constant C
for different values of K using Johnson’s Algorithm (lower curve)
and the Floyd-Warshall Algorithm (upper curve).
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Figure 7. The values of − log δ as a function of a, where δ > 0
is the minimum radius of ∆ for which the value λ computed for fa
on I \∆ with K = 5000 is positive.



16 DAY, KOKUBU, LUZZATTO, MISCHAIKOW, OKA, AND PILARCZYK

5.2.1. Choosing δ. The first thing we need to do when dealing with such a large
range of parameter values is to think about the appropriate choice of δ. For general
parameter values other than a = 2, it is no longer true that the value of λ is
independent of δ. Indeed, for an open and dense set of parameter values with
periodic attractors, λ will be positive only if δ is sufficiently large. Therefore, we
first use our algorithms to obtain some estimate δ(a) of the minimum value of δ
which gives a positive value of λ. These values of δ = δ(a) are thus the natural
choices for the computation of the exponent λ = λ(a). Figure 7 shows the resulting
values of − log δ(a) computed with the bisection method applied until the accuracy
in − log δ(a) of about 0.06 has been reached (the actual accuracy is determined
heuristically in the algorithm, based on the initial guess for δ(a)).

Remark. It is interesting to note that, although we have not checked this on a
systematic basis, the variation of λ with respect to δ in the cases in which δ(a) is
positive, i.e., for parameters which have periodic attractors, seems to be a function
which has a jump-type discontinuity at δ(a). For many parameter values, the
computations give λ < 0 for δ < δ(a) and λ strictly positive (sometimes quite
large) for δ ≥ δ(a). In fact, it does not appear that the estimate for λ improves
significantly by taking δ moderately larger than δ(a). Intuitively, one can speculate
that we have the following picture: For a given parameter a, the map fa may have
a periodic attractor. By general theory, the immediate basin of attraction of this
periodic attractor will contain a neighbourhood of the critical point. However, any
orbit which lies in the complement of this immediate basin is hyperbolic repelling
with some multiplier which may be uniformly strictly bounded away from zero.
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Figure 8. Computed values of λ for a ∈ [1.7, 2.0], K = 5000 and
δ = 0.01.

5.2.2. Computing λ for different parameter values. Finally, Figures 8 and 9 show
values of λ computed for Statement 1 for several thousand parameter intervals
which fill [1.7, 2.0], and a fixed choice of K = 5000. The analogous graphs for the
values of λ0 computed for Statement 2 are very similar, so we do not plot them in
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separate pictures (they can be found at the website whose address was indicated in
the Introduction).
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Figure 9. Computed values of λ for a ∈ [1.7, 2.0], K = 5000 and
δ = δ(a).

The graph in Figure 8 corresponds to a fixed choice δ = 0.01. In this case,
as discussed above, λ can be negative and this indicates failure in proving the
exponential expansion for the corresponding value of a. Figure 9 reflects choosing
δ = δ(a) as above. Notice that in general this gives significantly lower values for λ.
This should be expected, as in most cases we have δ(a) < 0.01 and therefore we are
computing λ for a much smaller critical neighbourhood. However, by increasing
the number of partition elements (for better results, combined with using a non-
uniform partition, as discussed in Section 5.1.2), we might expect to be able to
recover the (positive) values of λ from the graph depicted in Figure 8 even for the
choices of δ as in Figure 9, although we have not done such an experiment.

5.2.3. Comparison with non-rigorous approach. It is interesting to compare the
results and methods described above with the more standard, albeit non-rigorous,
Lyapunov exponent calculations. These generally consist of picking some more or
less arbitrary initial condition x and directly computing the value of

(9)
1
n

log
∣∣Dfn(x)

∣∣ =
1
n

n−1∑
i=0

log
∣∣Df(f i(x)

)∣∣
for some large value of n chosen in such a way that the final iterate is close to
the initial point and that estimates obtained using some substantially different
large values of n are in agreement, e.g., for n1 < n2 < n3 with n1 ≈ 0.5n3 and
n2 ≈ 0.75n3. The Lyapunov exponent λ(x) at the point x is variously defined as the
liminf or limsup, or limit if it exists, of (9) as n→∞. It should be noted straight
away that by virtue of its definition as a limit, the value of λ(x) cannot generally
be rigorously estimated just by direct calculation of (9) no matter how large n
is chosen, without additional theoretical considerations (however, see [7, 23, 24]
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for interesting discussions and approaches to this issue). Also, in principle the
value of λ(x) depends on x and thus specific choice of initial condition can play a
role in the value that is obtained. Nevertheless, it turns out empirically that such
calculations can be quite useful and give some reasonable idea of the actual values
to be expected, at least in part because it turns out that in many situation the
value of λ(x) is actually constant Lebesgue-almost everywhere. Figure 10 gives the
graph of the Lyapunov exponents calculated via (9) for various parameters in the
quadratic family.

Figure 10. Non-rigorous calculations of the Lyapunov exponents
in the quadratic family.

A comparison with the results of analogous computations illustrated in Figure 8
makes one notice that both graphs are very similar, except the direct computa-
tion of (9) yields consistently higher values of the Lyapunov exponent than the
graph theoretic computations. This may appear unexpected in view of the fact
that the computations shown in Figure 8 refer to orbits which never enter a certain
neighbourhood, in this case (−0.01, 0.01) of the critical point, whereas the compu-
tations in Figure 10 allow orbits in principle to come arbitrarily close to the critical
point, thus in possibly picking up arbitrarily small derivatives. It seems necessary
therefore to address this apparent contradiction. We explain it as follows.

First of all, we recall some non-trivial theoretical results from one-dimensional
dynamics. The first is that by [3] for the quadratic family almost all parameters
either have an attracting periodic orbit, and thus negative Lyapunov exponent, or
satisfy the so-called Collet-Eckmann condition (positive Lyapunov exponent along
the critical orbit). Moreover, by [22] the Collet-Eckmann condition implies that all
Lyapunov exponents (of all invariant measures) are positive and uniformly bounded
away from 0. In particular, this means that the values of λ and λ0 as defined above
in relation to the uniform expansion exponent outside some critical neighbourhood,
do not depend on the size of the critical neighbourhood. This remarkable result can
be understood intuitively by noticing that points very close to the critical point,
shadow the orbit of the critical point for a relatively long time during which they
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exhibit an exponential derivative growth (from the Collet-Eckmann condition as-
sumption). It turns out that this period of derivative growth is actually sufficient to
compensate the small derivative near the critical point, giving an overall exponen-
tial growth at a uniform rate, i.e., points which are very close to the critical point
shadow its orbit for a longer time so that in the end the average rate of growth is
uniformly bounded from below.

The conclusion from the observations in the previous paragraph is that the com-
puted value of the Lyapunov exponents should not depend very much on whether
we allow or not entries to some critical neighbourhood and thus in theory the val-
ues computed in Figures 8 and 10 should be comparable, rather than one being
smaller than the other, as might at first have been thought to be the case. The
discrepancy is therefore down to the computational methods used in the graph-
theoretic approach, and more precisely to the intrinsic limitation of using a fixed
“finite-resolution” implicitly defined by our choice of partition. Indeed, in regions
of high derivative, such as near an expanding fixed or periodic point, small partition
elements are strongly expanded and thus mapped across other partition elements.
In the graph-theoretic encoding we need to consider the worst case scenario which
means that we need to assume that points in such a partition element are mapped
outside this region to other regions with possibly small derivative, whereas in re-
ality points may spend a very large number of iterates close to such an expanding
fixed or period point, and thus picking up much more expansion. This explains why
our approach generally yields lower values for the expansion than those computed
using (9). The only exception from this rule can be observed for the thin “spikes”
that go down in Figure 10, as in those few cases the orbits gain strong contraction
while coming close to the critical point, which is ruled out in our case illustrated
in Figure 8.

Fortunately, the limitations of the graph-theoretic approach are not a real ob-
struction to achieveing optimal estimates, as improved bounds can be obtained
either by more cleverly constructed partitions or simply finer partitions, as dis-
cussed above. The most constructive point of view is then perhaps to see the direct
non-rigorous calculations as providing a very useful benchmark for the expected
values and as a guide to how fine a partition one should use in order to achieve
rigorous bounds which are as close as possible to the expected ones.
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