
HOMOLOGY ALGORITHM BASED ON ACYCLIC SUBSPACE

MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Abstract. We present a new reduction algorithm for the e�cient computa-
tion of the homology of a cubical set. The algorithm is based on constructing
a possibly large acyclic subspace, and then computing the relative homology
instead of the plain homology. We show that the construction of acyclic sub-
space may be performed in linear time. This signi�cantly reduces the amount of
data that needs to be processed in the algebraic way, and in practice it proves
itself to be signi�cantly more e�cient than other available cubical homology
algorithms.

1. Introduction

In this paper we introduce a new method for the computation of the homology
of a cubical set X. The method is based on the elementary observation that

Hn(X) ∼=

{
Hn(X,A) for n ≥ 1
Z⊕Hn(X,A) for n = 0

if A is an acyclic subset of X. By an acyclic set we mean a set whose homology is
the same as the homology of the space consisting of just one point. The key part of
the presented method is the construction of a possibly large acyclic cubical subset A
of X in an e�cient way. Then we compute the relative homology of the pair (X,A)
in order to obtain H∗(X). Due to the excision property of the relative homology
the cost of this computation depends only on the amount of cubes in X which are
not in A, so it is relatively small when A is large.

We present our method for cubical homology, but it is straightforward to extend
the method to simplicial homology.

1.1. Motivation. Among the �rst applications of the homology algorithm of tri-
angulations were problems in computer-aided design [1]. Although in the classical
homology theory simplicial complexes constitute the traditional combinatorial rep-
resentation of sets, in many present day applications cubical structure is more natu-
ral and convenient. For instance, in digital imaging the data is usually acquired and
stored as a bitmap of pixels or voxels. In rigorous numerics of dynamical systems
computations are performed by means of interval arithmetic [2], which also leads in
a natural way to cubical sets. The need to compute the homology of a cubical set
appeared probably for the �rst time in the computer assisted proof of chaos in the
Lorenz equations [3, 4]. In that case, just in lack of a better method, the homology
was found just by a visual inspection. This was possible, because the set was pla-
nar and although it was large, its topology was very simple. However, this paper
indicated the need for e�cient cubical homology algorithms and in 1999 the �rst
working implementations [5, 6] of such algorithms appeared. This, together with

2000 Mathematics Subject Classi�cation. Primary 55-04, 55N35; Secondary 52B99.
Key words and phrases. homology algorithm, cubical set, cubical homology, acyclic subspace,

Smith diagonalization.
The �rst and the third author are partially supported by KBN, Grant N201 037 31/3151. The

second author is partially supported by the DARPA TDA project and the Department of Energy
grant no. 97891.

1

2 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

new algorithms translating the problems in dynamics to problems in topology of cu-
bical sets [7, 8, 9, 10], enabled more advanced computer assisted proofs in dynamics
[11, 12, 13, 14]. On the other hand, the availability of cubical homology software en-
abled direct applications to image processing and recognition [15, 16, 17, 18]. Other
areas of applications of computational homology are: pattern classi�cation [19, 20],
sensor networks [21], and materials science [22]. In many of these applications the
number of cubes or simplices is counted in hundreds of thousands or even millions.
All this creates the demand for faster homology algorithms.

1.2. Prior work. The classical homology algorithms reduce the problem to Smith
diagonalization [23, Section 1.11]. The best available Smith diagonalization algo-
rithms have supercubical complexity [24]. This is in general not su�cient when the
number of building blocks of the topological space (cubes, simplices) is counted in
thousands or more. The problem of e�cient computation of homology groups has
been addressed by many authors and from various points of view [1, 25, 26, 27, 28,
29, 30, 31, 32].

An alternative to various improvements of the Smith Normal Form algorithm,
including probabilistic algorithms, are the methods of reduction originally proposed
in [26] and then developed in [27, 31, 11, 33]. The reduction methods consist in
iterating the process of replacing the chain complex or even the topological space
by a smaller one with the same homology and computing the homology only when
no more reductions are possible. This way one postpones the process of computing
the homology of the chain complex until the complex is small. Moreover, if the
reduction process is applied directly to the topological space, then also the expensive
process of constructing the chain complex is postponed until the space is small. Of
course, one can pro�t from the reduction process only if one step of the reduction
is computationally inexpensive and the reduction is signi�cant. The present work
may be characterized as an essentially new, fast and deep method of reducing the
topological space.

We will use three earlier implementations of reduction methods as a reference
point for the presented new method. (All these implementations are available from
the web page of the Computational Homology Project [34]).

PP Algebraic elementary reductions by P. Pilarczyk [5], based on [26].
BK Geometrically controlled algebraic reductions by W. Kalies [6], based on

[27].
AR Algebraic elementary reductions by M. Mrozek [35], based on [26].

In the case of a cubical set the matrices of boundary maps are sparse. Unfortu-
nately this is not very helpful, because of the �ll-in process in the Smith algorithm.
Nevertheless, it is reasonable to use this fact and all three implementations PP,
BK, AR use an appropriate technique (respectively hashing tables, trees and lists)
to avoid unnecessary manipulation of zeros.

1.3. Outline. We begin with recalling the concepts of cubical sets and cubical
homology in Section 2. Then, in Section 3, an algorithm for the construction of
an acyclic subspace is presented. In Section 4 we show how to use this algorithm
to construct an e�cient homology algorithm. Various algorithms for the acyclic-
ity test used in Section 3 are discussed in Section 5. In Section 6 we show how
to e�ciently use the acyclic subspace homology algorithm in the presence of more
than one connected component. In Section 7 we discuss a related method of pre-
processing cubical sets, called by us shaving, which in some situations improves the
speed of homology computations. Then, in Section 8, we present the implementa-
tion of the method for cubical sets. This implementation is compared with earlier
implementations in Section 9, where some numerical experiments and benchmarks

HOMOLOGY VIA ACYCLIC SUBSPACE 3

are presented. In Section 10 we compare our software with some other homology
packages, not available from [34]. In the last section we present conclusions.

2. Preliminaries

In the paper we assume that the reader is familiar with the concepts of homol-
ogy theory, in particular the homology theory of cubical sets, as presented in [31].
However, to facilitate the understanding of the main results, we recall the basic
notation and basic concepts.

2.1. Cubical Sets. Throughout the paper the sets of natural numbers, integers,
rational numbers and real numbers are denoted respectively by N, Z, Q and R.
For a �nite set Z its cardinality is denoted by cardZ. Given sets A ⊂ X ⊂ Rd we
denote by intX A the interior of A in X.

An elementary interval in R is an interval of the form [k, k + δ], where k ∈ Z
and δ ∈ {0, 1}. If δ = 0, the interval is called degenerate. Let d ∈ N be �xed. The
Cartesian product of d elementary intervals is called an elementary cube in Rd. The
dimension of the elementary cube Q is the number of elementary intervals in the
product which are not degenerate. The family of all q-dimensional elementary cubes
in Rd is denoted by Kdq and the family of all elementary cubes in Rd is denoted by

Kd. The elements of Kd0 and Kd1 are referred to respectively as vertices and edges.
A subset X ⊂ Rd is called a cubical set if it is a �nite union of elementary cubes.

A �nite subfamily of Kd is called a cubical family.

2.2. Cubical Homology. A q-chain is a function c : Kdq → Z which vanishes at
all but a �nite number of cubes. The support of the chain c is given by

|c| :=
⋃
{Q ∈ Kdq | c(Q) 6= 0 }.

Given a cubical set X put

Cq(X) := { c ∈ Cq | |c| ⊂ X }.

Then Cq(X) with the argumentwise addition is a free abelian group. The set of all
elementary chains of the form

Q̂(P) =

{
1 if P = Q

0 otherwise

for all Q ∈ Kdq such that Q ⊂ X, is a basis of Cq(X). Given two elementary cubes

P ∈ Kdq1 and Q ∈ Kdq2 we de�ne the cubical product of the chains P̂ , Q̂, by

P̂ � Q̂ := P̂ ×Q

and we extend this de�nition linearly to arbitrary chains.
We de�ne the boundary operator as the homomorphism ∂ : Cq → Cq−1 given

recursively on generators by

∂Q̂ :=

0 if Q = [l],

[̂l + 1]− [̂l] if Q = [l, l + 1].
∂Î � P̂ + (−1)dim I Î � ∂P̂ if Q = I × P

for I ∈ K1 and P ∈ Kd−1.

One can verify that for every cubical setX we have an induced boundary operator
∂Xq : Cq(X)→ Cq−1(X) and ∂Xq ∂

X
q+1 = 0. Therefore, Bq(X) := im ∂Xq+1, the image

of ∂Xq+1 is a subgroup of Zq(X) := ker ∂Xq , the kernel of ∂
X
q . The quotient group

Hq(X) := Zq(X)/Bq(X)

4 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

is called the qth cubical homology group of X. By the homology of X we mean the
collection of all homology groups H(X) := {Hq(X)}.

2.3. Full Cubical Sets. A d-dimensional elementary cube in Rd is called a full
elementary cube. The family of all full elementary cubes will be denoted by Hd
or simply by H. A special case of a cubical set is the full cubical set, i.e. a �nite
union of full elementary cubes. Similarly, a full cubical family is a cubical family
consisting of full cubical sets. For every full cubical set X there exists a unique full
cubical family X ⊂ H such that

|X | :=
⋃
X = X.

Then X is called the representation of X and X is called the geometric realization
of X . In what follows we emphasize the formal di�erence between the cubical sets
and cubical families by denoting the latter with calligraphic letters. However, we
often freely carry over the terminology from cubical sets to their representations
as families of cubes. For instance, by the homology of X ⊂ H we understand the
homology of |X | and we say that X is acyclic meaning that |X | is acyclic.

A d-dimensional bitmap is a d-dimensional array of bits which correspond to
pixels, voxels, or higher-dimensional �boxes� which we will simply call pixels, in-
dependently of their dimension. A bitmap represents a cubical set in the fol-
lowing way: The pixel with the coordinates (k1, . . . , kd) corresponds to the cube
[k1, k1 + 1]× · · · × [kd, kd + 1], and the set represented by the bitmap is the union
of all the cubes whose corresponding pixels are set to 1.

A full elementary cube P is said to be a neighbor of a full elementary cube Q if
P∩Q 6= ∅. In terms of the corresponding pixels, this means that all their coordinates
di�er by no more than 1. The full elementary cube P is called a neighbor of a full
cubical family X ⊂ H if P is a neighbor of at least one cube Q ∈ X . A neighborhood
of Q is the set

o(Q) := {P ∈ H : P ∩Q 6= ∅}
and for a full cubical family X we de�ne oX (Q) := X ∩ o(Q).

Because of the way the geometric realization of a cubical family is de�ned, two
cubes that intersect along lower dimensional faces, such as vertices or edges, are
treated as adjacent. In the imaging literature, this is often referred to as considering
(3d − 1)-neighborhoods rather than 2d-neighborhoods, where d is the dimension of
the underlying space.

Since in the sequel we consider only full elementary cubes, we drop the words
full and elementary when referring to full elementary cubes. We also drop the word
full, when referring to full cubical sets and full cubical families.

3. Acyclic Subspace Construction

In this section we present the algorithm for the construction of an acyclic cubical
subset of a given cubical set.

The idea of the algorithm is to begin with a set A that contains a single cube
selected arbitrarily from X and extending this set by gradually adding cubes Q ∈
X \A such that |A|∪Q is acyclic. This may be considered as a variant of Algorithm
4.5 in [33]. We use a queue to store the neighbors of cubes added to A, as these are
potential candidates for addition to A in the next step.

All our tests for the acyclicity of |A| ∪Q presented in Section 5 are based on the
following elementary observation.

Lemma 1. If A is an acyclic cubical family and Q ∈ H\A, then |A| ∪Q is acyclic
if and only if |A ∩ o(Q)| is acyclic.

HOMOLOGY VIA ACYCLIC SUBSPACE 5

Proof. Put A′ := A ∩ o(Q). By [11, Lemma 9] the set |A′| ∩ Q is a deformation
retract of |A′|. Since obviously |A| ∩ Q = |A′| ∩ Q, we conclude that |A| ∩ Q is a
deformation retract of |A ∩ o(Q)|. Therefore, by [31, Theorems 6.65 and 6.69], the
set |A| ∩Q is acyclic if and only if |A∩ o(Q)| is acyclic and it remains to be proved
that |A| ∪Q is acyclic if and only if |A| ∩Q is acyclic.

Since |A| is acyclic by assumption and Q is acyclic by [31, Theorem 2.76], the
acyclicity of |A| ∪ Q follows from the acyclicity of |A| ∩ Q by [31, Theorem 2.78].
Now assume that |A| ∪ Q is acyclic. It follows from Mayer-Vietoris Theorem (see
[31, Theorem 9.29]) that

Hk(|A| ∩Q) ∼= Hk+1(|A| ∪Q) = 0 for k ∈ N.

Thus we need to prove only that H0(|A| ∩ Q) ∼= Z. Let V1, V2 be two vertices in
|A|∩Q. Since |A| and Q are acyclic, there exists chains c1 ∈ C1(|A|) and c2 ∈ C1(Q)
such that ∂c1 = V̂1 − V̂2 = ∂c2. Then z := c1 − c2 ∈ Z1(|A| ∪Q). Since |A| ∪Q is
acyclic, there exists a d ∈ C2(|A| ∪Q) such that ∂d = z. By [31, Proposition 2.77]
there exist d1 ∈ C2(|A|) and d2 ∈ C2(Q) such that d = d1 + d2. Then

c1 − c2 = z = ∂d1 + ∂d2

and

u := c1 − ∂d1 = c2 + ∂d2 ∈ C1(|A| ∩Q).

Therefore, ∂u = ∂c1 = V̂1 − V̂2, which implies that V̂1 and V̂2 are homologous in
|A| ∩Q and consequently H0(|A| ∩Q) ∼= Z. �

In the following formal description of the acyclic subspace algorithm, it is as-
sumed that the function AcyclicityTest(A, Q) is admissible in the sense that it
either returns true meaning that A∩o(Q) is acyclic or it returns false meaning that
it failed to prove that A ∩ o(Q) is acyclic.

Several possible choices for this function are described in detail in Section 5.

Algorithm 2. AcyclicSubspace

function AcyclicSubspace (cubical family X)
begin

Q := any cube from X;
A := {Q};
Q := empty queue of cubes;

for each P ∈ X \ {Q} ∩ o(Q) do

enqueue(Q,P);
while Q 6= ∅ do begin

Q := dequeue(Q);
if AcyclicityTest(A,Q) then begin

A := A ∪ {Q};
for each P ∈ (X \ A) ∩ o(Q) do

if P 6∈ Q then

enqueue(Q,P);
end;

end;

return A;
end;

Note that in the actual implementation one might use two parallel data structures
to represent Q: a set and a queue, because in addition to the standard queue
operations, in the algorithm we also need to verify whether a given cube is already
contained in the queue or not, and this operation is normally not very e�cient for
queues.

6 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Every time a cube is added to the constructed acyclic subset, all its neighbors
from X \ A are enqueued. This construction has two advantages. First, only the
cubes whose addition to A preserves its connectedness are considered in the next
step, which prevents from analysing cubes disjoint from |A|. Second, the oldest
neighbors in the queue are processed �rst, which helps grow the set A in a balanced
way.

Theorem 3. Assume that the function AcyclicityTest in Algorithm 2 is admis-
sible. Then Algorithm 2 called with a nonempty cubical family X ⊂ H returns an
acyclic subset A of X . Moreover, the �while� loop is passed at most (3d−1) cardX
times.

Proof. Put

K := {k ∈ N | the �while� loop is passed at least k times}.

For k ∈ K let Ak and Qk denote respectively the contents of variable A and Q
on entering the kth pass of the �while� loop. Since the family A1 contains just
one cube from X , it is acyclic by [31, Theorem 2.76]. If k − 1, k ∈ K, then either
Ak = Ak−1 or Ak = Ak−1 ∪{Qk}. The latter case only happens when the function
AcyclicityTest called with Ak−1 and Qk−1 returns true. The admissibility of the
function AcyclicityTest and Lemma 1 imply that the set Ak is acyclic in this
case, too. By induction, all the sets Ak for k ∈ K are acyclic. It remains to be
shown that the �while� loop runs only at most (3d − 1) cardX times. Let q0 := 0
and for k ∈ K let qk and ak denote respectively the number of elements in the
queue Q and the number of elements in the set A on entering the kth pass of the
�while� loop. Note that ak+1 − ak ∈ {0, 1} whenever k, k + 1 ∈ K. For i ∈ N put

ki := max{l ∈ K | al ≤ i}.

Let I := {i ∈ N | ki < ki+1}. Observe that i ∈ I implies that the acyclicity test
succeeds on the kith pass of the �while� loop, aki = i and aki+1 = i+ 1. For i ∈ I
let si denote the number of cubes added to the queue Q inside the block following
the acyclicity test on the kith pass of the �while� loop.

For k ∈ K such that k + 1 ∈ K de�ne rk := qk+1 − qk. Observe that

rk =

{
−1 + si if k = ki for some i ∈ I,
−1 otherwise.

Now we have for k ∈ K

(1) qk =
k∑
i=0

rk = −k +
ak∑
i=1

si ≤ −k + ak(3d − 1) ≤ −k + (3d − 1) cardX .

Therefore, there exists a k0 ∈ N such that qk0 = 0. This implies that the �while�
loop terminates on the k0th pass of the �while� loop. Moreover, it follows from (1)
that k0 ≤ (3d − 1) cardX , which completes the proof. �

As an immediate corollary we get

Corollary 4. Assume the space dimension d is �xed and the function AcyclicityTest

in Algorithm 2 runs in constant time. Let n denote the cardinality of the cubical
family on input of Algorithm 2. Then Algorithm 2 runs in O(n) time when the cu-
bical families are implemented as bit arrays (bitmaps) and in O(n log n) time when
the cubical families are implemented as binary search trees.

HOMOLOGY VIA ACYCLIC SUBSPACE 7

4. Acyclic Subspace Homology Algorithm

Assume that Homology(X ,A) is a function which, given on input cubical families
A ⊂ X , returns the relative homology H∗(|X |, |A|) (for examples of algorithms
which may be used to implement such a function see [31, 36]). As we explained in
the introduction, the computation of the homology of |X | may be replaced by the
computation of the relative homology of the pair (|X |, |A|) for some subfamily A
such that |A| is acyclic. As we show in the proof of Theorem 6, the computation of
H∗(|X |, |A|) may be replaced by the computation of H∗(|X0|, |A0|), where A0 :=
o(X \ A) ∩ A and X0 := X \ A ∪ A0. This is where we pro�t from our approach,
because when X \A is small, then also X0 and A0 are small compared to X and in
consequence the homology of the pair (|X0|, |A0|) may computed much faster than
the homology of |X |.

Therefore the cubical homology algorithm based on acyclic subspace construction
is as follows:

Algorithm 5. Acyclic Subspace Homology Algorithm

function AS_Homology(cubical family X)
begin

A := AcyclicSubspace(X);
Z := X \ A;
A0 := o(Z) ∩ A;
X0 := Z ∪A0;

return Homology(X0,A0);

end;

Theorem 6. Algorithm 5 called with a cubical family X on input returns the re-
duced homology of |X |.

Proof. Let X,A,X0, A0 denote the geometric realizations of X ,A,X0 and A0 re-
spectively. It follows from the acyclicity of A and from the exact sequence of the pair
(X,A) (see [31, Corollary 9.26]) that the homology groups Hn(X) and Hn(X,A)
are isomorphic for n > 0 and the sequence

0→ Z→ X0(X)→ X0(X,A)→ 0

is exact. Therefore, H0(X,A) is isomorphic to H0(X)/Z, i.e. it is isomorphic to the
0th reduced homology of X.

Now put U := intX |A \ A0|. One can easily verify that X0 = X \ U , A0 =
A \ U and U is a representable set in the sense of [31, De�nition 6.1]. Therefore,
it follows from [31, Theorem 9.14] that the inclusion ι : (X0, A0)→ (X,A) induces
an isomorphism between H∗(X0, A0) and H∗(X,A). �

5. Acyclicity Tests

In this section we present some algorithms which may be used to implement
the function AcyclicityTest(A, Q). Recall that we only require this function to
be admissible. In other words, we assume that the test is a partial test: when the
function returns true, then the family A∪ o(Q) is acyclic but when it returns false,
it does not imply that A ∪ o(Q) is not acyclic. Of course, a total test, when the
function returns true if and only if the family A∪ o(Q) is acyclic, might seem to be
a better choice, but as we will see in the sequel this is not true in general, because
a total test may be computationally expensive.

8 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

5.1. Direct Computation. The simplest and most straightforward choice for a
total acyclicity test is to use an independent homology algorithm to make the ver-
i�cation if A ∩ o(Q) is acyclic. Using a slow homology algorithm to construct a
faster homology algorithm need not be a total nonsense, especially in low dimen-
sions, because the slow homology algorithm will be applied only to A∩o(Q), which
is small in low dimensions. Unfortunately, as we will see in Section 9, numerical
experiments do not indicate that one can pro�t from this approach.

5.2. Direct Homology Computation via Tabulated Con�gurations. In the-
ory, one can index all the subsets (con�gurations) of o(Q), compute their homology
to determine their acyclicity, store this information in a table AcyclicConfigTest
and use the table for the acyclicity test.

Algorithm 7. Tabulated Con�gurations

function TabConfTest(cubical family A,cube Q)
begin

N := o(Q) ∩ A;
n := index of N;

return AcyclicConfigTest[n];
end;

The number of such con�gurations in d-dimensional space is cd := 23d−1. Start-
ing from dimension 4, when c4 = 280, the method is of no practical value but in
dimensions 2 and 3 the method may be implemented, and it leads to an extremely
fast version of Algorithm 5, as we will show in Section 9.

5.3. Simple Intersection. Since every polyhedron is homeomorphic to a cubical
sub-complex of the boundary of a cube (see [37, Part III, Theorem 1.1] or [31, The-
orem 11.17]), a total acyclicity test would essentially have to contain a complete
homology algorithm. Therefore, a well chosen partial test might turn out to be a
better choice for dimension where we cannot tabulate all the neighborhood con�g-
urations. Probably the simplest nontrivial partial test for the acyclicity of a family
A consists in verifying whether the intersection of the family is nonempty.

Algorithm 8. Simple Intersection

function SimpleIntersection(cubical family A,cube Q)
begin

N := o(Q) ∩ A;
return

⋂
N 6= ∅;

end;

Theorem 9. Assume Algorithm 8 is called with a family A ⊂ H and a cube
Q ∈ H \ A. If it returns true, then |A| ∩Q is acyclic.

Proof. Assume Algorithm 8 returns true. This implies that there exists an
x ∈

⋂
N . Therefore, |N | is star-shaped in the sense of [31, De�nition 2.82]. Thus

it is acyclic by [31, Proposition 2.84]. �
The function SimpleIntersection(A,Q) is fast, but obviously it is very far

from a total criterion. Nevertheless, as we will show in Section 9, even this simple
function may lead to a signi�cant improvement in the computation of the homology
of cubical sets.

HOMOLOGY VIA ACYCLIC SUBSPACE 9

5.4. Recursive Approach. Further improvement may be obtained by calling the
function AcyclicSubspace implemented on the basis of some simple partial test
for acyclicity to obtain a better test for acyclicity.

Algorithm 10. Recursive Test

function RecursiveTest (cubical family A, cube Q)
begin

if AcyclicityTest(A,Q) then

return true;

else begin

C := A ∩ o(Q);
return C = AcyclicSubspace (C);

end;

end;

Theorem 11. Assume AcyclicityTest is admissible and Algorithm 10 is called
with a family A ⊂ H and a cube Q ∈ H \ A. If it returns true, then |A| ∩ Q is
acyclic.

Proof. The algorithm returns true either if AcyclicityTest(A, Q) succeeds or
when AcyclicSubspace applied to C := A∩o(Q) returns C. If AcyclicityTest(A,Q)
succeeds, then |A|∩Q is acyclic by the admissibility of AcyclicityTest. If AcyclicSubspace(C)
returns C, then obviously A ∩ o(Q) = C is acyclic, too. �

6. Connected Components

Obviously, an acyclic subset of a set X is contained in a connected component of
X. Therefore, if X has more than one connected component, then it is reasonable
to construct an acyclic subspace for every component separately, use the acyclic
subspaces to �nd the homology of the components and then take the direct sum of
the homology of the components to get the homology of X. However, to speed up
the computations, one can combine the algorithm for the acyclic subspace with the
algorithm for the connected components.

Algorithm 12. Connected Component

function ConnectedComponent (cubical family X, A)
begin

Q := empty queue of cubes;

for each Q ∈ A do

enqueue (Q, Q);
while Q 6= ∅ do begin

Q := dequeue (Q);
A := A ∪ {Q};
for each p ∈ (X \ A) ∩ o(Q) do

if p 6∈ Q then

enqueue (Q, p);
end;

return A;
end;

Theorem 13. Algorithm 12 called with a cubical family X and its nonempty subset
A such that |A| is connected returns the family B such that |B| is a connected
component of |X |, and A ⊂ B. Moreover, the loop is passed at most cardX times.

10 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Proof. The inclusion A ⊂ B is obvious. Since each cube Q ∈ X is enqueued at
most once into the queue Q, and on each pass of the �while� loop exactly one cube
is dequeued from this queue, the number of passes of the �while� loop does not
exceed the number of cubes in X . Let n denote the total number of passes of the
�while� loop.

We will now prove that |B| is a connected component of |X |. By [31, Corollary
2.57] it is enough to prove that |B| is an edge connected component of |X |. Let
V be a vertex of |A| and let E denote the edge connected component of V in
|X |. For i = 1, 2, . . . n let Ai−1 denote the value of the variable A just before the
ith pass of the �while� loop and let Qi denote the value of the variable Q in the
ith pass of the loop. Obviously, A0 ⊂ Ai−1 ⊂ Ai and Ai = Ai−1 ∪ {Qi} for each
i = 1, . . . , n. Suppose |Ak−1| is connected for some k ∈ N. Since |Ak| = Qk∪|Ak−1|,
to show the connectedness of |Ak| it is enough to prove that Qk ∩ |Ak−1| 6= ∅. This
is true, because Qk, as an element of the queue Q was either enqueued as an
element of A0 ⊂ Ak−1 or as a neighbor of the cube Qj for some j < k and then
Qk ∩ |Ak−1| ⊃ Qk ∩ Qj 6= ∅. Since the connectedness of |A0| = |A| is assumed in
the theorem, by induction |B| = |An| is connected. In particular |B| ⊂ E.

Now assume that the opposite inclusion does not hold. Since E is a cubical set
(see [31, Proposition 2.56 and Corollary 2.57]), we can choose a vertexW in E \|B|.
Let V0, V1, . . . Vm be an edge path in E such that V0 = V , Vm = W and let i be the
last index such that the edge joining Vi−1 and Vi is contained in |B|. Then there
exists a cube P such that Vi ∈ P \ |B| and an index k such that Vi ∈ Qk. It follows
that P ∈ o(Qk), which implies that P is enqueued to the queue Q on some pass of
the �while� loop. This implies that P ∈ |B|, a contradiction. �

After having constructed the whole connected component of X containing A, we
remove this component and repeat this procedure for the remaining family until we
obtain the empty set. Algorithm 5 combined with this idea is as follows:

Algorithm 14. Acyclic Subspace Homology and Conn. Components

function AS_Homology_C2 (cubical family X)
begin

result := 0;
while X 6= ∅ do begin

A := AcyclicSubset(X); (Algorithm 2)

B := ConnectedComponent(X,A); (Algorithm 12)

result := result⊕H∗(B,A);
X := X \ B;

end;

return result;

end;

7. Shaving

We will say that Q ∈ X is removable from X if Q ∩ |X \ {Q}| is acyclic.

Proposition 15. (see [33, Lemma 7.1]) If Q ∈ X ⊂ H is removable from X , then
the homology of X \ {Q} is isomorphic to the homology of X .

Therefore, cubes removable from X may be removed from X without changing
the homology of X . Of course, after removing a removable cube Q from X , the re-
movability status of the remaining cubes may change, so the removability condition
of the remaining cubes needs to be checked with respect to X \{Q}. By iterating the
procedure of removing the removable cubes we obtain the process which we will call
shaving. Shaving is not a new idea (see [11, Algorithm 10], for example). Gameiro

HOMOLOGY VIA ACYCLIC SUBSPACE 11

and Nanda [38] modi�ed Kalies' homology software BK [6] by preprocessing the
homology computations with shaving. The modi�ed software was used in [39]. A
variant of shaving in the case of relative homology was used in [33].

The advantage of shaving is the fact that the removable cubes may be searched
in an arbitrary order, so there is no need to keep a queue of neighbors as in the
case of constructing an acyclic subspace. The simplest reduction algorithm based
on removing the removable cubes is as follows.

Algorithm 16. Shave

function Shave (var cubical family X)
begin

for each Q ∈ X do

if AcyclicityTest(X \ {Q},Q) then

X := X \ {Q};
end;

It follows immediately from Proposition 15 that the homology of X remains con-
stant in course of running Algorithm 16. In many situations running this algorithm
as a preprocessor to any other homology algorithm is a good idea, because the algo-
rithm is very fast and may substantially reduce the original cubical family, speeding
up the homology computations. Obviously, Algorithm 16 does not guarantee that
the resulting cubical family does not admit a removable cube anymore, so one might
run this algorithm a few times. The question how many times crucially depends on
the particular cubical family. Actually, if the family contains very few removable
cubes, preprocessing homology computations with any kind of shaving may slow
down the computations. We will compare various versions of the acyclic subspace
construction with and without shaving in Section 9.

8. Implementation

The acyclic subspace cubical homology algorithms based on the four variants of
the acyclicity test described in Section 5 have been implemented by the �rst author.
These implementations are

ASH � based on direct homology computations (Section 5.1)
ASLT � based on lookup tables (Section 5.2)

AS � based on simple intersection (Section 5.3)
ASR � based on recursive approach (Section 5.4)

All four implementations use the AR implementation of [26] after the acyclic sub-
space is constructed.

The implementations together with the benchmark programs used to prepare
the timings presented in Section 9 are available at [35]. These implementations also
constitute a part of the Computer Assisted Proofs in Dynamics (CAPD) software
library [40] and Computational Homology Project (CHOMP) software library [34].

The implementations are written in C++ using the techniques of templates
and generic programming to ensure both high e�ciency (to guarantee the good
performance) and high level abstraction (to ensure the reusability of the general
code in various settings). For the moment, the software is available for cubical
sets implemented as bitmaps. Bitmaps provide a memory-e�cient and access-time-
e�cient method of storing cubical sets. For example, a 3-dimensional rectangular
area of the size 256 × 256 × 256 �lled with cubes in 50% , i.e. containing about 8
million cubes as in the case of cubical sets described in Section 9.4 takes up merely
2 MB of memory. The same amount of memory used to store a cubical set as a
list of triples of one byte coordinates would allow for only 2/3 of a million cubes

12 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Size ASLT ASR AS BK ASH AR PP

80000 0.2 3.94 9.08 43.48 132 131.31 566.92
115200 0.28 5.75 14.08 60.27 184.77 226.31 1143.67
156800 0.36 7.53 20.63 75.95 250.2 361.34 2095.89
204800 0.45 9.97 25.72 122.44 327.53 547.59 3604.52
259200 0.58 13.39 33.92 213.8 420.72 785.78 5908.92
320000 0.69 18.83 43.16 246.41 537.78 1137.06 9197.56

α 0.9 1.1 1.1 1.3 1.0 1.6 2.0

Table 1. Homology computation times in seconds for two-
dimensional torus

and the access time to the cubes would be essentially slower. This makes cubical
sets and bitmaps a perfect marriage, which is not possible for other types of sets,
for instance sets of simplices and general polyhedra. However, the generic approach
to writing the code enables its adaptation to other methods of storing cubical sets
and, with some more e�ort, to simplicial homology. This work is in progress.

9. Experiments

In this section we will compare the performance of the implementations ASH,
ASLT, AS and ASR in various settings with the performance of the implemen-
tations PP, BK and AR described in Section 1.2. Let us emphasize that all these
implementations are compatible in the sense that they all constitue part of the
Computational Homology Project [34] and may be easily compiled together with
the benchmark software in one executable, which makes the comparison straight-
forward and reliable. To make the experiments we used gcc compiler version 3.4.2
ported for MS Windows XP. The timings presented in this section were obtained
on a 3.6GHz Pentium PC with 2GB RAM running MS Windows XP. The size of
cubical sets in the tables we present is measured as the amount of full elementary
cubes in the set.

9.1. Torus. In our �rst experiment we rescale a two dimensional cubical torus in
directions parallel to its surface at six di�erent scales and compute the homology.
The computation times in seconds for various scales and algorithms are gathered
in Table 1.

This table shows that the implementations ASLT, ASR and AS signi�cantly
outperform in this case the other implementations. As one can expect, the win-
ner is ASLT, which runs about four orders of magnitude faster than the slowest
implementation and more than two orders of magnitude faster than the quickest
implementation not based on acyclic subspace construction. The bottom row of
Table 1 contains an approximate measure of complexity α of the implementations
obtained by �nding the best �t of the data to the function T = cnα. For all the im-
plementations of the acyclic subspace homology algorithm these numbers are close
to one, which indicates that the complexity of these algorithms is close to linear.

The size of the constructed acyclic subset for the four implementations based
on Algorithm 2 is about 50% of the original size in the case of AS but it exceeds
99% in all the other cases. It is surprising that in the case of ASR the reduction is
exactly the same as in the case of ASLT and ASH. The implementations ASLT
and ASH use a total acyclicity test, but we cannot claim that ASR uses a total
acyclicity test. Nevertheless, it seems that at least in low dimensions the acyclicity
test used by ASR might behave in practice as good as a total acyclicity test.

HOMOLOGY VIA ACYCLIC SUBSPACE 13

A cubical torus has few removable cubes. There are about 2.5% removable cubes
at the lowest rescaling factor and this goes down to 1.25% for the largest rescaling
factor. Therefore, one should not expect a substantial gain from preprocessing the
algorithms by shaving in this case. Actually, in experiments one even observes an
increase in computation time which may go above 400% in the case of ASR and
above 35% in the case of ASLT. This is understandable: when running shaving,
every cube is tested for removability and if the cube is not removable, then it
contributes to the total computation time only on the side of expenses. Therefore,
the cost is especially visible in algorithms in which the acyclicity test is particularly
expensive.

Figure 1. Cubical Bing's house with two front faces removed.

9.2. Bing's House. Our next experiment concerns the cubical Bing's house [41]
presented in Figure 1. Bing's house is a deformation retract of a cube in R3; there-
fore, it is acyclic. However, one can show that the acyclic subset of Bing's house
constructed by Algorithm 2 cannot be equal to the whole Bing's house. This is
related to the fact that Bing's house is an example of a contractible cubical set
which is not collapsible. Therefore, this example constitutes some challenge to Al-
gorithm 2.

Similarly as in the previous experiment, we rescale the Bing's house and compute
the homology. The computation times in seconds for various scales and algorithms
are gathered in Table 2.

Despite the challenging character of the Bing's house example, the outcome of
this experiment is very similar to the previous one. The graphical comparison of
the three best implementations of the acyclic subspace homology algorithm with
the best implementation not based on acyclic subspace is presented in Figure 2.
The constructed acyclic subset is again about 50% of the original size in the case of
AS. In the case of the three other acyclic subspace algorithms this number varies
from 97.6% in the case of the smallest rescaling to 99.7% in the case of the largest
rescaling. Again, as one may expect, shaving does not speed up the computations

14 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Size ASLT ASR AS BK ASH AR PP

74341 0.16 4.64 11.38 31.53 96.17 41.47 572.39
132321 0.27 8.34 20.8 57.86 166.98 104.64 1811.13
206901 0.41 13.74 33.66 76.31 256.95 212.41 4180.47
298081 0.59 20.77 50.88 182.41 370.59 358.31 7431.42
405861 0.86 29.56 69.63 221.33 504.7 602.91 12647.3
530241 1.11 39.19 90.61 384.99 654.49 - 17527.7

α 1.0 1.1 1.1 1.3 1.0 1.6 1.8

Table 2. Homology computation times in seconds for Bing's house

in this case but actually it slows them down by factors similar to the case of the
torus.

Figure 2. Graphical comparison of ASLT, ASR, AS and BK

in the case of Bing's House. The slower implementations are not
presented.

9.3. Klein Bottle. Let us turn now our attention to dimension four and consider
the Klein bottle. We apply the same procedure of rescaling as in the two preceding
examples. The resulting computation times in seconds are gathered in Table 3.
The ASLT implementation in not available in dimension four, because the lookup
tables are too large in this dimension, so we do not run this test. We also skip

HOMOLOGY VIA ACYCLIC SUBSPACE 15

Size ASR AS AR BK PP

1382 0.94 0.47 1.7 2.83 1.3
12522 2.89 4.5 20.17 30.52 28.73
34830 7.28 13.88 67.89 98.36 265.34
68306 13 28.53 157.64 217.88 1165.16
112950 20.89 48.66 306.86 373.83 2997.63
168762 31.48 73.91 - 578.59 6190.05

α 0.7 1.1 1.2 1.1 1.8

Table 3. Homology computation times in seconds for Klein bottle

the ASH implementation, because it is very slow. The table shows that also in
this case the construction of acyclic subspace substantially speeds up the homology
computations.

Figure 3. An unmasked (left) and masked (right) example from
Cahn-Hilliard equation.

9.4. Cahn-Hilliard Equations. Cahn-Hilliard equation [42] is a phenomenolog-
ical model used to describe phase separation in binary alloys. The solution of the
equation is a function of the time t and location x, which represents the relative
concentration di�erence between the two materials at time t and location x. The
change in time of the topology of the set P (t) of locations where the function is pos-
itive (or of the set N(t) where the function is negative) may be used to identify and
distinguish the evolving microstructures described by the Cahn-Hilliard equation
[19]. Figure 3 presents two cubical sets, both on a cubical grid 256×256×256. The
set on the left is a cubical approximation to a sample set P (t). Gameiro [39] found
that typically such sets are connected (the 0th Betti number is one), have no voids
(the second Betti number is zero) and have many tunnels (the �rst Betti number
is large). Homology computation times for one such set consisting of 8, 392, 997
three-dimensional cubes are presented in Table 4 for two implementations in two
variants: preceded with shaving (ASLTsh and BKsh) and without shaving (ASLT
and BK). As one can see, shaving dramatically speeds up the computations. Ac-
tually, there are 8, 302, 485 removable cubes in this case (almost 99% of the total
number of cubes), so the speeding up should not be surprising. Nevertheless, there

16 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Size ASLTsh BKsh ASLT BK

8392997 6.55 137.28 195.83 22952.0

Table 4. Homology computation times in seconds for the un-
masked example from Cahn-Hilliard equation.

Distance 64 16 4

Second Betti number 0 1 130

Table 5. Second Betti numbers for the masked example from
Cahn-Hilliard equation.

Distance Size ASLTsh BKsh

64 8524217 8.02 196
16 8917371 9.55 237.73
4 10490025 147.69 1193.31

Table 6. Homology computation times in seconds for the masked
examples from Cahn-Hilliard equation.

are still 90, 512 cubes left for further processing. Shaving takes in this case 5.36 sec
of processor time. Taking into account only the time needed byASLTsh and BKsh
after shaving, one can again see that ASLT is two orders of magnitude faster than
BK.

As we already mentioned, the simulations together with homology computations
indicate the presence of many tunnels and no voids in the sets P (t) and N(t). By
inserting a number of equally separated, parallel full planes into these sets (referred
to as masks) one obtains what we call a masked set. An example of such a set is
visible on the right-hand side of Figure 3. The homology of the masked sets may
provide some rough measure of the size of the tunnels. The reason is that if the
masks are close enough one to the other, then they close the tunnels, which results
in the appearance of voids not present in the original sets. Therefore, the second
Betti number of the masked sets counts the number of tunnels which close after
inserting the mask.

The outcome of an experiment in which mask were inserted respectively in the
distance of 64, 16 and 4 voxels are gathered in Table 5. The table shows that the
tunnels in general are rather short.

Of more interest to us are the computation times for the masked examples. They
are gathered in Table 6. The unshaved implementations are skipped due to long
computation times. The interesting thing one can observe is the dramatic increase
in the computation times for the cases of masks separated only by 4 voxels. This
increase cannot be attributed to the increase of the size of the set. What happens is
that in this case shaving reduces the set only to 2, 316, 567 cubes. This process takes
7.75 seconds. The acyclic subset of 2, 012, 701 is constructed in 5.55 seconds. This
leaves still 303, 866 cubes for further processing by the relative homology software.

We �nish this example with an intriguing diagram. The mask separated by 10
voxels were inserted into the sets P (t) for a sequence of 100 consecutive times t.
For every such set the homology was computed. The ratio of the second to the �rst

HOMOLOGY VIA ACYCLIC SUBSPACE 17

Betti number is presented in Figure 4. The ratio may be treated as some measure of
the number of long tunnels to all tunnels. Of course, the explanation of the visible
oscillations of this measure is beyond the area of the present research. Let us only
mention, that the total homology computations needed to produce this graph took
less than 2000 seconds.

Figure 4. Ratio β2/β1 in masked examples from Cahn-Hilliard
equation as the function of time.

10. Comparison with other packages

The comparison of various homology algorithms presented in the previous section
concern only implementations available from the Computational Homology Project
webpage [34]. As we already mentioned, in this cases the tests are reliable, becuase
all these implementations may be compiled together with the benchmark software in
one executable. However, other homology algorithms and other homology software
are described in the literature.

In this section we present some comparison of the compare homology software
available from CHOMP web page [34] with two other homology algorithms, not
included in CHOMP. We presents these comparisons seperately, becasue they are
not as reliable as the comparisons presented in the previous section due to di�culties
in compiling the software together or di�erences in the accepted input.

10.1. LinBox library. LinBox project [43] is a project devoted to exact computa-
tional linear algebra. In particulat the LinBox library contains software for Smith
diagonalization based on recent advances in Smith diagonalization algorithms. The
LinBox library is very large, so it is not easy to compile it together with other
packages. Recently A. Urba«ska [44] compared AR and ASLT algorithms with
homology algorithms utilizing sparse implementations of Smith diagonalization al-
gorithms available in the LinBox library [43]. The experiments where performed
on SGI Altix with 64 Itanium 2 processors. She found that without some form of
preliminary reduction the algorithms in LinBox cannot compete with AS or even

18 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

Size AR LS

380 0.380 0.348
866 0.971 0.929
1682 1.974 1.957
2487 3.146 3.349
10128 15.87 24.95
42323 87.12 608.3

Table 7. Homology computation time in seconds of Klein bottle
in various sizes for AR and LS.

Size ASLTsh LS

8393324 10.94 15022.9

Table 8. Comparison of ASLTsh and LS on an unmasked ex-
ample from Cahn-Hilliard equation.

AR, at least not for the class of problems, where the complex is large and the
homology to be computed is simple.

Table 7 compares AR against LS, the best performing homology algorithm
based on LinBox software for Smith Normal Form combined with a simple form of
reduction based on eliminating rows and columns with exactly one non-zero entry.
The table shows that the performance of AR and LS is comparable for small sizes
of our four dimensional representation of Klein bottle, but AR is signi�cantly bet-
ter for large sizes. As pointed out in [44], this is because the reduction algorithm
described in [26] uses cascade type eliminations of generators between the dimen-
sions whereas the standard Smith Normal Form algorithm does not bene�t from
the possible cancellations of generators in di�erent dimensions.

Another test performed by A. Urba«ska concerns a direct comparison ofASLTsh
and LS on one of the sets coming from numerical simulations of Cahn-Hillard
equations performed by M. Gameiro [39]. The timings are gathered in Table 8

10.2. Persistence homology algorithm. The Klein bottle example gives a pos-
sibility of a very rough comparison of the acyclic subspace homology algorithm
with the persistence homology algorithm [32] by Zomorodian and Carlsson. The
implementation of this algorithm is for various �eld coe�cients. The case of Z2

coe�cents is special, because there is no need to store coe�cients and the authors
have a specialized implementation for this case, which is much faster than the gen-
eral �elds. However, Z2 coe�cients are not good when one is interested in torsion.
To detect torsion one needs Z coe�cients or at least Zp coe�cients for some p > 2.
Integer coe�cients are better, because they guarantee that in every case all torsion
is picked up.

Zomorodian and Carlsson present in [32] the timings resulting from the 2.2 GHz
Pentium processor homology computations of a simplicial representation of Klein
bottle consisting of 12000 simplices. The timings are 0.01 sec for Z2 coe�cients,
0.23 sec for Z3, Z5 and Z3203 coe�cients and 0.5 sec for rational coe�cients.

Our cubical representation of Klein bottle presented in the �rst row of Table 3
(for the rescaling factor 1) consists of 1382 four dimensional cubes. This in con-
strast to the Zomorodian and Carlsson representation, which is two dimensional.
When all the lower dimensional faces are counted as in the case of Zomorodian and

HOMOLOGY VIA ACYCLIC SUBSPACE 19

Carlsson, the number is 49500. The computation time by AS implementation is
0.47 sec, but this would be 0.77 sec when rescaled to the speed of 2.2GHz processor
and 0.19 sec when rescaled to the size of 12000 simplices. These rough estimates
suggest that in the case of Klein bottle the performance of our algorithm may be
slightly better or similar to the perfomance of the persistence homology algorithm
except the case of Z2 coe�cients. However, this does not take into account that
our representation consists of four dimensional cubes, whereas the Zomorodian and
Carlsson representation is built of two dimensional simplices.

The true comparison of acyclic subspace homology algorithm with the persis-
tence homology algorithm of Zomorodian and Carlsson will be possible only after
the acyclic subspace algorithm in various versions is implemented for simplicial
complexes and the computations are compared on the same hardware for various
rescalings of Klein bottle and other sets.

11. Conclusions

In the paper we introduced a new homology algorithm based on the construction
of an acyclic subspace. We proved that the complexity of the construction of the
acyclic subspace is linear. We considered four tests for the acyclicity, leading to four
di�erent variants of the acyclic subspace homology algorithm. Then we presented
several numerical experiments with the implementation of the four variants for
cubical homology. The tests clearly indicate that the implementation of the version
based on lookup tables for dimensions two and three signi�cantly outperform other
available software for cubical homology. This applies both to purely arti�cial tests
based on rescaled, simple topological spaces and to a test based on data gathered
from numerical investigation of di�erential equations. In dimensions higher than
three the superiority is not so strong. This is because the number of neighbors of a
cube grows exponentially with dimension. In particular, in dimension higher than
three we cannot use lookup tables. A method to circumvent this problem will be
presented in [36].

On the theoretical side it would be nice to understand how deep the reduction
based on acyclic subspace construction may be. The numerical tests, even in the
case of Bing's house, indicate that the reduction is very substantial. But we are
not able to exclude the existence of spaces with complicated simple homotopy type
[45] (for instance along the lines of Bing's house), for which it is not possible to
construct a large acyclic subspace despite the fact that their homology is simple.
However, let us mention the following conjecture concerning Algorithm 2

Conjecture 17. ([46]) Let Xn be a sequence of cubical families such that cardXn →
∞ and for any two n,m ∈ N the sets |Xn| and |Xm| are homeomorphic. Then

lim
n→∞

card AcyclicSubspace(Xn)
cardXn

= 1.

If the conjecture is true, then together with Theorem 3 it would imply that the
homology of a cubical set of a �xed topology type may be computed in linear time.
An analogous conjecture may be formulated for simplicial complexes.

Apart from trying to understand the theoretical aspects of the construction of
acyclic subspace, there are several directions in which the present research may be
continued. The �rst thing to do is to adapt the available implementation to simpli-
cial homology and compare it with the available software for simplicial homology.
This work is in progress. Also in progress is the adaptation of the method to the
computation of homology of inclusions [47]. De�nitely it is worth to investigate
some other methods of testing for acyclicity, better than the simple intersection

20 MARIAN MROZEK, PAWE� PILARCZYK, AND NATALIA �ELAZNA

method described in this paper, but still computationally inexpensive. This is left
for future investigation.

Acknowledgment

We express our thanks to M. Gameiro for the permission to use the results of his
numerical simulations of the Cahn-Hilliard equation in the experiments presented
in this paper. Gameiro's simulations were performed with the support of a DARPA
grant.

References

[1] B.R. Donald and D.R. Chang, On the complexity of computing the homology type of a
triangulation. In Proc. 32nd Ann. IEEE Sympos. Found. Comput. Sci.(1991), 650�661.

[2] R.E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cli�s, N.J., 1966.
[3] K. Mischaikow, M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull.

Amer. Math. Soc. (N.S.) 33(1995), 66�72.
[4] K. Mischaikow, M. Mrozek, Chaos in the Lorenz equations: a computer assisted proof,

Part II: details, Mathematics of Computation 67(1998), 1023�1046.
[5] P. Pilarczyk, Homology Computation - Software and Examples, 1999:

http://www.pawelpilarczyk.com/homology.php
[6] W. Kalies, chom - A Cubical Homology Program, 1999:

http://www.math.fau.edu/kalies/chom.html.
[7] A. Szymczak, A combinatorial procedure for �nding isolating neighborhoods and index pairs

, Proc. Royal Soc. Edinburgh, Ser. A 127A(1997), 1075�1088.
[8] A. Szymczak, Index pairs: From dynamics to combinatorics and back, Ph.D. Thesis, Georgia

Inst. Tech., Atlanta, 1999.
[9] M. Dellnitz, O. Junge, The algorithms behind GAIO - set oriented numerical methods for

dynamical systems, Ergodic theory, analysis, and e�cient simulation of dynamical systems,
Springer, Berlin, 2001, 145�174, 805�807.

[10] M. Mrozek, Index Pairs Algorithms, Foundations of Computational Mathematics, 6(2006),
457�493.

[11] P. Pilarczyk, Computer assisted method for proving existence of periodic orbits, TMNA
13 (1999), 365�377.

[12] S. Day, Towards a rigorous numerical study of the Kot-Scha�er model, Dynamic Systems
and Applications 12(2003), 87�98.

[13] S. Day, O. Junge, and K. Mischaikow, A Rigorous Numerical Method for the Global
Analysis of In�nite Dimensional Discrete Dynamical Systems, SIAM Dynamical Systems
3(2004), 117�160.

[14] Z. Arai, K. Mischaikow, Rigorous Computations of Homoclinic Tangencies SIAM Journal
on Applied Dynamical Systems 5(2006), 280�292

[15] M. Allili, K. Mischaikow, A. Tannenbaum, Cubical homology and the topological classi-
�cation of 2D and 3D imagery, IEEE International Conference on Image Processing 2(2001),
173�176.

[16] M. Niethammer, A. N. Stein, W. D. Kalies, P. Pilarczyk, K. Mischaikow, A.
Tannenbaum, Analysis of Blood Vessel Topology by Cubical Homology, Proceedings of In-
ternational Conference on Imagine Processing 2(2002), 969�972.

[17] W. Kalies, M. Niethammer, K. Mischaikow, and A. Tannenbaum, On the detection
of simple points in higher dimensions using cubical homology, IEEE Transactions on Image
Processing, 15(2006), 2462�2469.

[18] M. �elawski, Pattern recognition based on homology theory, Machine Graphic and Vision,
14(2005), 309�324.

[19] M. Gameiro, K. Mischaikow and Th. Wanner, Evolution of pattern complexity in the
Cahn-Hilliard theory of phase separation, Acta Materialia 53(2005), 693�704.

[20] M. Gameiro, W. Kalies, and K. Mischaikow, Topological characterization of spatial-
temporal chaos Physical Review E 70, Article 035203 (Rapid communication), 2004.

[21] V. de Silva and R. Ghrist, Coordinate-free coverage in sensor net-
works with controlled boundaries via homology, preprint available at
http://www.math.uiuc.edu/~ghrist/preprints/

[22] T. Teramoto, Morphological Characterization of Diblock Copolymer Problem and Topolog-
ical Computation, conference presentation available at http://chomp.rutgers.edu/workshop/

[23] J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.

HOMOLOGY VIA ACYCLIC SUBSPACE 21

[24] A. Storjohann, Near Optimal Algorithms for Computing Smith Normal Form of Integer
Matrices, In Proceedings of the 1996 international symposium on symbolic and algebraic
computation, ISAAC 1996, (1996), 267�274.

[25] J. Friedman, Computing Betti Numbers via Combinatorial Laplacians, In Proc. 28th Ann.
ACM Sympos. Theory Comput.(1996), 386�391.

[26] T. Kaczynski, M. Mrozek, M. �lusarek, Homology computation by reduction of chain
complexes, Computers and Math. Appl. 35(1998), 59�70.

[27] W. Kalies, K. Mischaikow, and G. Watson, Cubical Approximation and Computation
of Homology, in: Conley Index Theory, Banach Center Publications 47(1999), 115�131.

[28] S. Basu, On bounding the Betti numbers and computing the Euler characteristic of semi-
algebraic sets, Discrete and Computational Geometry 22(1999), 1�18.

[29] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological Persistence and Simpli�-
cation, Discrete and Computational Geometry 28(2002), 511�533.

[30] J.-G. Dumas, F. Heckenbach, D. Saunders and V. Velker, Computing Simplicial
Homology Based on E�cient Smith Normal Form Algorithms, In Algebra, Geometry and
Software Systems(2003), 177�207.

[31] T. Kaczynski, K. Mischaikow, M. Mrozek, Computational homology, Applied Mathe-
matical Sciences 157, Springer-Verlag, New York, 2004.

[32] A. Zomorodian, G. Carlsson, Computing Persistent Homology, Discrete and Computa-
tional Geometry, 33(2005), 249�274.

[33] K. Mischaikow, M. Mrozek, P. Pilarczyk, Graph approach to the computation of the
homology of continuous maps, Foundations of Computational Mathematics 5(2005), 199�229.

[34] Computational Homology Project:
http://chomp.rutgers.edu/

[35] M. Mrozek, Homology Software, 2006:
http://www.ii.uj.edu.pl/~mrozek/software/homology.html.

[36] M. Mrozek, B. Batko, The coreduction homology algorithm, submitted.
[37] J. Blass, W. Holszty«ski, Cubical polyhedra and homotopy, I, II, III, IV, V, Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 50(2)(1971), 131�138; 50(6)(1971), 703�708;
53(8)(1972), 275�279; 53(8)(1972), 402�409; 54(1973), 416�425.

[38] M. Gameiro, V. Nanda, Modi�cations to Kalies' homology software, personal communica-
tion.

[39] M. Gameiro, Numerical simulations of the 3D Cahn-Hilliard equation, personal communi-
cation.

[40] Computer Assisted Proofs in Dynamics:
http://capd.wsb-nlu.edu.pl

[41] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré Conjecture,
Lectures on Modern Mathematics II, T.L. Saaty ed., Wiley (1964), 93�128

[42] J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free
Energy, J. Chem. Phys. 28(1958), 258�267.

[43] Project LinBox: Exact computational linear algebra:
http://www.linalg.org

[44] A. Urba«ska, Smith Normal Form Algorithms for Sparse Matrices with Applications to
Homology Computations, M.Sc. Thesis, Jagiellonian University, Kraków, 2007 (in Polish,
with English Abstract).

[45] M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics 10,
Springer-Verlag, New York-Berlin, 1973.

[46] T. Kaczynski, M. Mrozek, R. Srzednicki, personal communication.
[47] N. �elazna, Computing homology of inclusions via acyclic subspace construction, preprint.

Marian Mrozek, Institute of Computer Science, Jagiellonian University, ul. Na-
wojki 11, 30-072 Kraków, Poland

URL: http://www.ii.uj.edu.pl/~mrozek/

Paweª Pilarczyk, Institute of Computer Science, Jagiellonian University, ul. Na-
wojki 11, 30-072 Kraków, Poland and Georgia Institute of Technology, Atlanta, GA
30332-0160, U.S.A., Current address: Kyoto University, Department of Mathematics,
Kyoto 606-8502, Japan.

URL: http://www.pawelpilarczyk.com/

Natalia �elazna, Institute of Computer Science, Jagiellonian University, ul. Na-
wojki 11, 30-072 Kraków, Poland

E-mail address: zelazna-at-ii.uj.edu.pl

