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Abstract

We introduce a new approach to the algorithmic computation of the
Conley index for continuous maps. We use the technique of splitting an
index pair into two layers which is inspired by the work of Mrozek, Reineck
& Srzednicki (Trans. AMS 352 (2000) 4171–4194). The main advantage of
our construction over the approach based directly on the one introduced
by Mischaikow, Mrozek & Pilarczyk (Foundations Comp. Math. 5 (2005)
199–229) is that our cubical sets have the excision property. Moreover,
our solution has some advantages in comparison to the approach recently
proposed by Mrozek (Foundations Comp. Math. 6 (2006) 457–493).1

1 Introduction

The Conley index [4, 7, 12, 24] is a topological tool for the study of isolated
invariant sets in continuous and discrete dynamical systems. The definition of
the Conley index is based upon the notion of an index pair and will be explained
later in this section. Introducing a cubical grid in Rn and enclosing a continuous
map in a combinatorial cubical multivalued map (also explained later) allows
one to compute index pairs automatically [18, 25]. Cubical homology [8, 10, 20]
can be further used to effectively compute the homological version of the index
as defined in [12]. In this way, the Conley index can be used in computer-
assisted analysis of qualitative behavior of dynamical systems ([3, 5, 11, 16, 17],
to mention a few examples).

Unfortunately, sometimes the combinatorial objects obtained in the algo-
rithmic construction of an index pair are not suitable for direct computation of
the homological Conley index. Due to the overestimates in the combinatorial
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map, the inclusion map that appears in the definition of the index map is not an
excision in some cases, and thus the index map is not properly defined. (These
maps are defined further; see formulas (2) and (4) in this section.) The example
depicted in Figure 1 illustrates such a situation.

One way to overcome this difficulty is to impose more restrictive conditions
on a combinatorial index pair, as proposed in [11], or to decrease the index pair
in size, as discussed at the end of this section. Both solutions, however, either
limit the applicability of the computational approach to the Conley index, or
lead to complications in the algorithmic homology computation (because of the
necessity to deal with more general cubical sets), which we would like to avoid.

In this paper we introduce a new alternative method for treating the con-
structed index pair and index map, which allows for using them to compute
the homological Conley index, even if the inclusion in question is not an exci-
sion. It seems to be easier and more efficient to deal with computationally, and
even allows one to use the already existing algorithms [10] and software [20] for
this purpose, with only minor modifications either to the algorithms, or to the
processed data, both implemented for instant use and discussed in Section 5.

1.1 Index pairs and the Conley index

Let Z and R denote the sets of integers and real numbers, respectively. Although
the following definitions can be stated for an arbitrary locally compact metric
space, we restrict our attention to Rn in order to avoid unnecessary complica-
tions. For a set A ⊂ Rn we denote its closure and its interior by cl A and int A,
respectively.

Let f : Rn → Rn be a continuous map. Although it is enough to assume that
f is only defined on some subset of Rn, for simplicity of notation we will not
discuss this general case.

Given a compact set N ⊂ Rn, the invariant part of N is defined as

Inv N := {x ∈ N : there exists a sequence {xn}n∈Z in N

such that x0 = x and xn+1 = f(xn) for all n ∈ Z}.

The set N is called an isolating neighborhood if Inv N ⊂ int N .
A pair P := (P1, P2) of compact subsets of Rn is called a topological pair

in Rn if P2 ⊂ P1. If Q := (Q1, Q2) is also a topological pair, then by f : P →
Q we denote such a map f : P1 → Q1 that f(P2) ⊂ Q2. A continuous map
h : P → Q is said to be a homeomorphism between P and Q if h : P1 → Q1 is a
homeomorphism and h(P2) = Q2.

Definition 1.1 (see [24]) A topological pair (P1, P2) in Rn is called an index
pair (with respect to f) if the following conditions are satisfied:

(a) f(P1 \ P2) ⊂ P1,
(b) f(P2) ∩ P1 ⊂ P2,
(c) Inv

(
cl(P1 \ P2)

)
⊂ int(P1 \ P2).

If (P1, P2) is an index pair with respect to f , then P1 ∪ f(P1) = P1 ∪ f(P2),
and the map

(1) fP : (P1, P2)→ (P1 ∪ f(P2), P2 ∪ f(P2)),
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which sends a point x to f(x), is well defined (and obviously continuous). More-
over, (

P1 ∪ f(P2)
)
\ P1 =

(
P2 ∪ f(P2)

)
\ P2,

and therefore the quadruple
(
P1, P2, P1 ∪ f(P2), P2 ∪ f(P2)

)
has the excision

property in the following sense.

Definition 1.2 Let (P1, P2) and (Q1, Q2) be topological pairs such that P1 ⊂
Q1 and P2 ⊂ Q2. We say that the quadruple (P1, P2, Q1, Q2) has the excision
property if Q1 \ P1 = Q2 \ P2.

Intuitively, the excision property says that (Q1, Q2) is an extension of (P1, P2)
obtained by expanding P2 in such a way that P1 \P2 is not touched. This prop-
erty is crucial for the definition of the Conley index based on the index pair
(P1, P2) and the map fP defined by (1).

The Conley index [4] originally defined for flows was transferred to the case
of maps by Mrozek [12] and generalized by Szymczak [24]. Since these gener-
alizations are quite complicated, either using Alexander-Spanier cohomology or
formulated using the abstract category theory, an apparently more accessible
definition of the Conley index for maps was introduced by Franks and Riche-
son [7] which is claimed to be equivalent to the one posed by Szymczak (see [7,
Proposition 8.1 and 8.2]). However, although the notion of shift equivalence used
in [7] appeals to intuition, it is also expressed in the abstract category language
similar to [24], and thus turns out to be not much easier than the latter.

Our paper is aimed at developing a construction useful for an actual com-
putational method, and therefore in the algorithmic computations and exam-
ples we chose to use Mrozek’s construction and the (cubical) homology functor,
because this seems to be the only approach which can be dealt with algorith-
mically. Indeed, efficient homology computation algorithms for maps are known
in this context (see [8, 10]), and their implementation is freely available (see
[20]), whereas computing a canonical representation of a shift equivalence class
seems to be an open problem [K. Mischaikow, personal communication]. In the
theoretical justification of the correctness of our method we are going to use the
Alexander-Spanier cohomology functor (see [21]) in order to make our reasoning
precise and mathematically sound. The Reader not familiar with Alexander-
Spanier cohomology theory can instantly skip these parts without loss of the
core idea of the paper.

The definition of the (co)homological Conley index is based on the index
pair (P1, P2), the map fP defined by (1), and the inclusion map

(2) iP : (P1, P2)→
(
P1 ∪ f(P2), P2 ∪ f(P2)

)
.

We will now recall the definition of the cohomological Conley index (the homo-
logical Conley index is defined in a similar way).

Let H∗ denote the Alexander-Spanier cohomology functor. We denote ho-
momorphisms induced in cohomology by continuous maps by appending a su-
perscript asterisk to the map symbol; in particular, the map fP induces the
following homomorphism in cohomology:

(3) f∗P : H∗
(
P1 ∪ f(P2), P2 ∪ f(P2)

)
→ H∗(P1, P2).
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Since the quadruple
(
P1, P2, P1∪f(P2), P2∪f(P2)

)
has the excision property as

formulated in Definition 1.2, the inclusion iP is an excision for the Alexander-
Spanier cohomology (see [21], Theorem 6.6.5), and therefore it induces an iso-
morphism i∗P in cohomology. We would like to remark that iP may not be an
excision if other (co)homology theories are considered (e.g., singular homology);
therefore, using Alexander-Spanier cohomology in the definition of the Conley
index is justified by its strong excision property.

Since the homomorphism i∗P is invertible, the map

(4) I∗P := f∗P ◦ (i∗P )−1 : H∗(P1, P2)→ H∗(P1, P2)

is well defined; it is called the index map (cf. [12]).
The cohomological Conley index of (P1, P2) is defined as the Leray reduction

of
(
H∗(P1, P2), I∗P

)
(see [24] or [12] for details). It does not depend on the

choice of an index pair, but only on the isolated invariant set Inv
(

cl(P1 \ P2)
)
;

that is to say, if for another index pair (Q1, Q2) we have Inv
(

cl(P1 \ P2)
)

=
Inv

(
cl(Q1 \ Q2)

)
, then the Conley indices of (P1, P2) and of (Q1, Q2) are the

same.

1.2 Combinatorial approach to the Conley index

Although our reasoning is valid for a general class of acyclic grids on locally
compact metric spaces, for clarity of presentation we restrict our attention to
cubical sets (defined below) based on a rectangular grid in Rn. As it will be seen,
the cubical sets we deal with are compact polyhedra, so all the (co)homology
theories are equivalent for them, and therefore we can use the simpler cubical ho-
mology instead of Alexander-Spanier cohomology in the illustrations and actual
computations without loss of generality if we consider these sets and continuous
maps between them.

We cover the entire phase space Rn with a uniform grid of cubes. Since
rescaling does not change the quantities we compute, for simplicity we assume
that the cubes are of unit size:

K :=
{ n∏

i=1

[li, li + 1] : li ∈ Z
}

Every finite subset A of K represents a compact subset of Rn:

|A| :=
⋃

Q∈A
Q

If A ⊂ Rn is such that A = |A| for some finite A ⊂ K, then A is called a (full)
cubical set.

Given two sets X, Y , by F : X ( Y we denote a multivalued map, i.e., a map
F : X → 2Y such that F (x) ⊂ Y for each x ∈ X. If X ,Y ⊂ K are finite then a
multivalued map F : X ( Y is called a combinatorial cubical multivalued map
(or a combinatorial map for short). We say that a combinatorial map F : X ( Y
is a combinatorial representation of a continuous map f : |X | → |Y| if

(5) f(Q) ⊂ int
∣∣F(Q)

∣∣
4



for all Q ∈ X (cf. [25]). If a combinatorial representation F : (X ,A)( (Y,B) of
f : (|X |, |A|) → (|Y|, |B|) is acyclic (see [10] for details), then it can be used to
compute automatically (i.e., on the computer) the homomorphism f∗ induced
by f in homology (see [10, 20]).

Definition 1.3 (see [17]) We say that a pair (P1,P2) of finite subsets of X
such that P2 ⊂ P1 is a combinatorial index pair with respect to a combinatorial
map F : X ( Y if the following conditions hold:

(a) F(P1 \ P2) ⊂ P1,
(b) F(P2) ∩ P1 ⊂ P2.

Proposition 1.4 (see [17]) If (P1,P2) is an index pair with respect to a com-
binatorial representation F of f , then |P| :=

(
|P1|, |P2|

)
is an index pair with

respect to f .

If the quadruple
(
|P1|, |P2|, |P1∪F(P2)|, |P2∪F(P2)|

)
has the excision prop-

erty (as in Definition 1.2), then the combinatorial representation F of f can
be used to compute the Conley index of (P1, P2) := (|P1|, |P2|). Namely, one
must introduce combinatorial analogues of the maps fP and iP , defined by (3)
and (2), respectively, based on the combinatorial representation F of f , defined
as follows. The map fP is replaced by

fP,F :
(
|P1|, |P2|

)
→
(
|P1 ∪ F(P2)|, |P2 ∪ F(P2)|

)
given by exactly the same formula as f|P|, but note that with a different
codomain. Similarly, in place of iP one must introduce the inclusion

(6) iP,F :
(
|P1|, |P2|

)
→
(
|P1 ∪ F(P2)|, |P2 ∪ F(P2)|

)
which again differes from i|P| by its codomain only.

Unfortunately, it turns out that in general, for a combinatorial index pair,
it may sometimes happen that

|P1 ∪ F(P2)| \ |P1| 6= |P2 ∪ F(P2)| \ |P2|

and, as a consequence, iP,F may not induce an isomorphism in homology, mak-
ing the would-be index map IP,F∗ := (iP,F∗)−1 ◦ fP,F∗ (where the subscript
asterisk indicates the corresponding map in homology) improperly defined. An
example of such a situation is illustrated in Figure 1. If this happens then it is
not obvious how to obtain an appropriate index map based on the combinatorial
objects P1, P2 and F .

Note that the example shown in Figure 1 is especially misleading, because

H∗
(
|P1|, |P2|

)
' H∗

(
|P1 ∪ F(P2)|, |P2 ∪ F(P2)|

)
,

where H∗ denotes the (cubical) homology functor (see [8]). This isomorphism,
however, is not induced by the inclusion. Namely, the generator of H1

(
|P1|, |P2|

)
indicated in picture (a) is mapped by iP,F∗ to zero, and another generator which
surrounds the hole in picture (b) appears. In general, there is no reason why the
spaces H∗

(
|P1|, |P2|

)
and H∗

(
|P1∪F(P2)|, |P2∪F(P2)|

)
should be isomorphic,

and often they are not.
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(a) (b)

Figure 1: Example index pair in which iP defined by (6) does not induce an
isomorphism in homology (the thick lines with white endpoints represent gener-
ators of the first homology group). (a) P1 \P2 consists of the dark grey squares,
P2 is plotted as medium grey squares, and the border of f(|P1|) is indicated with
the smooth line. (b) Additionally, F(P1) \ P1 is plotted as light grey squares.

It is clear that the problem with the lack of the excision property arises
due to an overestimation of f(|P2|) by |F(P2)| which may have a nonempty
intersection with |P1|\|P2|. A solution to this issue proposed in [11] is to impose
more restrictive assumptions on the combinatorial index pair2 (see Definition 7.2
and Theorem 8.1 in [11]). These assumptions, however, may be more difficult to
satisfy (for instance, the example illustrated in Figure 1 is not a combinatorial
index pair in the sense of [11]). In order to verify them it may also be necessary
to compute F not only on P1, but on some larger set N , and this computation
may be costly in some cases. A specific example that illustrates this issue is
discussed in Section 5.

Moreover, using sets built of full cubes is advantageous because of efficient
geometric reduction techniques which have already been developed and their
software implementation [20] is available. This is in contrast to the approach
based on the idea of weak index pairs introduced in [11] in which a more general
class of cubical sets appears. Those sets are built of both full cubes and their
faces, which makes some geometric reduction techniques inapplicable. Therefore,
we are not interested in that solution either.

In the subsequent sections, we introduce an alternative approach which al-
lows one to use a combinatorial index pair as in Definition 1.3, built of full
cubical sets, for the computation of the Conley index. The idea is to lift the
set |P1| up to a higher level, so that |F(P2)| (which remains at the base level)
does not have a chance to intersect it and cause trouble. A formal definition of
this operation is based upon considering two-layer sets with the identification
of |P2| on both layers, and is described in details in Sections 2 and 3, with a
formal justification of the correctness of using it to compute the Conley index
postponed to Section 4. Note that an idea similar in spirit to this construction
was already considered in [13] in the proof of Theorem 3, as we were informed
by M. Mrozek after having shown him our manuscript.

2In fact, our Definition 1.3 is not a generalization of Definition 7.2 in [11]; it is different.
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2 Double-layer Ω-sets and the Ω-map

In this section we introduce a construction of two-layer sets built upon an in-
dex pair, and we transfer the map fP onto these sets. We also prove that the
transferred index pair and its image satisfy the excision property. The formal
justification of the correctness of this construction for the purpose of the com-
putation of the Conley index is postponed to Section 4. A combinatorial version
of this construction applicable to combinatorial index pairs will be introduced
in Section 3.

2.1 Definition of Ω-sets

Given three compact sets R0, R1, R2 ⊂ X such that R2 ⊂ R0∩R1, let ∼ denote
the relation in R1×1∪R0×0 which identifies (x, 1) with (x, 0) for each x ∈ R2.
Inspired by the ideas from [14], we define the following set:

ΩR2(R1, R0) := R1 × 1 ∪R0 × 0/∼.

In ΩR2(R1, R0) we introduce the usual quotient topology induced by the pro-
jection

q : R1 × 1 ∪R0 × 0→ ΩR2(R1, R0)

which sends a point (x, i) from the domain to its equivalence class [x, i] with
respect to the relation ∼. We call a set constructed in this way a (double-layer)
Ω-set. Once it is clear from the context what set R2 is considered, we shall drop
the subscript and write Ω(R1, R0) instead of ΩR2(R1, R0).

Let P := (P1, P2) be an index pair. Fix R2 := P2. To shorten the notation,
we use the following symbols (see Figure 2 for an illustration):

S(P1) := P1 ∪ f(P1)
(
= P1 ∪ f(P2) by Def. 1.1 (a)

)
S(P2) := P2 ∪ f(P2)
S(P ) :=

(
S(P1), S(P2)

)
PΩ :=

(
Ω(P1, P2), Ω(P2, P2)

)
S(PΩ) :=

(
Ω(P1, S(P2)), Ω(P2, S(P2))

)

(a) (b)

Figure 2: The set Ω
(
P1, S(P2)

)
for P1 = [2, 8] ⊂ R and P2 = [2, 4] ∪ [6, 8] with

f(P2)\P2 = [0, 2]∪ [8, 10]: (a) The sets P1×1 (the upper layer), P2×0 (the dark
grey part of the lower layer), (f(P2) \ P2) × 0 (the light grey part of the lower
layer), and the identification relation ∼ (indicated by arrows); (b) An intuitive
illustration of the quotient space Ω

(
P1, S(P2)

)
.
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2.2 Definition of the Ω-map

As in [22] and [23], let us define the map f̃P : PΩ → S(PΩ) induced by fP : P →
S(P ) in the following way:

(7) f̃P ([x, i]) :=

{
[fP (x), 0] if x ∈ P2,

[fP (x), 1] if x ∈ P1 \ P2.

We call this map the Ω-map.
Analogously as in [22], we prove the following result.

Proposition 2.1 The map f̃P is well defined and continuous.

Proof: Property (a) in Definition 1.1 implies that f̃P is well defined.
In order to prove the continuity of f̃P we will show that f̃P ◦ q is continuous

(see [6], Theorem 2.4.2).
First, note that the following holds:

(8) f
(

cl(P1 \ P2)
)
⊂ cl f(P1 \ P2) ⊂ cl P1 ⊂ P1,

where the first inclusion is a consequence of the continuity of f , the second one
follows from (a) in Definition 1.1, and the third one is trivial.

Let x ∈ cl(P1 \ P2) such that x 6∈ P1 \ P2. Then x ∈ P2 and f̃P ([x, i]) =
[fP (x), 0] by (7). On the other hand, inclusion (8) implies that fP (x) ∈ P1, and
by property (b) in Definition 1.1, fP (x) ∈ P2. Therefore, (fP (x), 0) ∼ (fP (x), 1),
and, consequently, [fP (x), 0] = [fP (x), 1]. As a result, f̃P ([x, i]) = [fP (x), 1] for
all x ∈ cl(P1 \ P2), not only for x ∈ P1 \ P2, as defined in (7).

Since the restrictions of the map f̃P ◦q to any of the three closed sets P2×{0},
cl(P1 \ P2)× {1} and P2 × {1} which cover its domain are continuous, the map
f̃P ◦ q itself is continuous, too. �

2.3 Correspondence between the two-layer objects and
the original ones

In order to establish the relation between the constructed Ω-sets and Ω-map
and the original index pair and the map fP , let us define the following maps

(9) h : P1 3 x 7→ [x, 1] ∈ Ω(P1, P2)

(10) S(h) : S(P1) 3 x 7→

{
[x, 1] if x ∈ P1

[x, 0] if x ∈ S(P2)
∈ Ω

(
P1, S(P2)

)
Proposition 2.2 The maps (9) and (10) are homeomorphisms of pairs, h : P →
PΩ and S(h) : S(P )→ S(PΩ), respectively.

Proof: Note that S(h) is well defined, because [x, 0] = [x, 1] for x ∈ P2 and
there is no such x that would both belong to f(P2) and P1 \ P2 by Definition
1.1, property (b).
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To prove that S(h) is continuous, note that the restrictions of S(h) to both
P1 as well as to S(P2) are continuous as compositions of continuous maps: the
embeddings

S(P2) ↪→ S(P2)× 0 and P1 ↪→ P1 × 1

and the projection q. Since P1 and S(P2) are closed and their union is the entire
domain of S(h), this proves the continuity of S(h).

The inverse map

S(h)−1 : Ω
(
P1, S(P2)

)
→ S(P1),

expressed as S(h)−1([x, i]) = x is well defined. It is continuous as a map defined
on the quotient space iff

S(h)−1 ◦ q : P1 × 1 ∪ S(P2)× 0→ S(P1)

is continuous (see [6] Theorem 2.4.2), and the latter is obvious.
Last but not least, notice that S(h) is in fact a homeomorphism between

topological pairs (as explained in Section 1), because

S(h)
(
S(P2)

)
= Ω

(
P2, S(P2)

)
.

The proof of the fact that h is a suitable homeomorphism is left to the reader.
�

Lemma 2.3 Under the already established notation, the following diagram com-
mutes:

P S(P )

PΩ S(PΩ)

-fP

?

h

?

S(h)

-
f̃P

Proof: Take any x ∈ P1. We will prove that

S(h)
(
fP (x)

)
= f̃P

(
h(x)

)
.

Namely, if x ∈ P1 \ P2, then f(x) ∈ P1 by property (a) in Definition 1.1,
and therefore S(h)

(
fP (x)

)
= [fP (x), 1]. On the other hand, h(x) = [x, 1], and

f̃P ([x, 1]) = [fP (x), 1]. If x ∈ P2, then f(x) ∈ S(P2), and S(h)
(
fP (x)

)
=

[fP (x), 0]. By (7), in this case f̃P

(
h(x)

)
= f̃P ([x, 1]) = [fP (x), 0]. This com-

pletes the proof. �

Similarly to Lemma 2.3, one can prove the following lemma which will play
an important role in Section 4.

Lemma 2.4 Under the already established notation, the following diagram com-
mutes:

S(P ) P

S(PΩ) PΩ

?

S(h)

�iP

?

h

�
ĩP
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2.4 The excision property

We are now ready to prove that the constructed Ω-sets are equally good as the
original index pair for the Conley index.

Theorem 2.5 The quadruple
(
PΩ, S(PΩ)

)
satisfies the excision property.

Proof: We will prove that

(11) Ω
(
P1, S(P2)

)
\ Ω(P1, P2) = Ω

(
P2, S(P2)

)
\ Ω(P2, P2).

To shorten the notation, denote the set on the left hand side of the equation
(11) by L, and the set on the right hand side by R. Consider [x, i] that belongs
either to L or to R. Since Ω

(
P2, S(P2)

)
⊂ Ω

(
P1, S(P2)

)
, we know that [x, i] ∈

Ω
(
P1, S(P2)

)
, and thus

x ∈ P1 ∪ S(P2) = (P1 \ P2) ∪ P2 ∪
(
S(P2) \ P2

)
.

If x ∈ P1 \ P2, then i = 1. Note that [x, 1] neither belongs to L (because
[x, 1] ∈ Ω(P1, P2)), nor to R (because [x, 1] 6∈ Ω

(
P2, S(P2)

)
).

If x ∈ P2, then [x, i] belongs to Ω(P1, P2), as well as to Ω(P2, P2), so again
[x, i] 6∈ L and [x, i] 6∈ R.

Finally, if x ∈ S(P2) \ P2, then i = 0, and [x, 0] ∈ Ω
(
P1, S(P2)

)
, but [x, 0] 6∈

Ω(P1, P2) and therefore [x, 0] ∈ L. On the other hand, [x, 0] ∈ Ω
(
P2, S(P2)

)
,

but [x, 0] 6∈ Ω(P2, P2), so [x, 0] ∈ R, which completes the proof. �

In Section 4 we will show that the double-layer version PΩ of the index pair
gives rise to the same Conley index as P .

3 Double-layer combinatorial Ω-sets and the com-
binatorial Ω-map

In this section we transfer the notion of double-layer Ω-sets and the Ω-map to
the combinatorial setting, and we prove that the combinatorial index pair as in
Definition 1.3 shifted into the double-layer setting gives rise to a quadruple which
satisfies the excision property, regardless of the overestimates which caused a
problem in the examples discussed in the Introduction. The justification of the
fact that the Conley index computed in the double-layer setting coincides with
the Conley index for the original index pair is postponed to Section 4. We begin
by transferring many notions related to cubical sets to the double-layer cubical
sets; the reason for this is that formally the set (12) defined below is not a
cubical set.

3.1 Definition of combinatorial Ω-sets

As in Section 2, given three finite sets R0,R1,R2 ⊂ K such that R2 ⊂ R0∩R1,
we define the set

(12) ΩR2(R1,R0) := R1 × 1 ∪R0 × 0/∼,

where (Q, 1) ∼ (Q, 0) iff Q ∈ R2. Sets constructed in this way are called by
us combinatorial Ω-sets. Like in Section 2, we shall write Ω(R1,R0) instead of
ΩR2(R1,R0) once R2 is clear from the context.

10



Combinatorial Ω-sets represent Ω-sets in the following way:

|ΩR2(R1,R0)| := Ω|R2|(|R1|, |R0|),

and subsets of combinatorial Ω-sets represent subsets of the corresponding Ω-
sets; namely, if Q ⊂ ΩR2(R1,R0), then

|Q| := {[x, i] : x ∈ Q, [Q, i] ∈ Q} ⊂ Ω|R2|(|R1|, |R0|).

Let (P1,P2) be an index pair with respect to a combinatorial representation
F of f . From now on R2 := P2. Analogously as at the beginning of Section 2,
we define the following sets S(P1),S(P2),S(P),PΩ and S(PΩ), by replacing in
the appropriate definitions Pi by Pi, (i = 1, 2) and f by F .

3.2 Definition of the combinatorial Ω-map

By analogy with the notion of a combinatorial map, if Ri,R′i are finite subsets
of K for i ∈ {0, 1, 2}, and R2 ⊂ R0 ∩R1 and R′2 ⊂ R′0 ∩R′1, then

G : ΩR2(R1,R0)( ΩR′2(R′1,R′0)

is called a combinatorial Ω-map.
We also say that a combinatorial Ω-map G (as above) is a combinatorial

Ω-representation of an Ω-map g : |ΩR2(R1,R0)| → |ΩR′2(R′1,R′0)| if

g([Q, i]) ⊂ int |G([Q, i])|.

As in [22] and [23], we define the map F̃P : PΩ ( S(PΩ) in the following
way:

(13) F̃P([Q, i]) :=

{
{[R, 0] : R ∈ F(Q)} if Q ∈ P2,

{[R, 1] : R ∈ F(Q)} if Q ∈ P1 \ P2.

Property (a) in Definition 1.3 implies that F̃P is well defined.
To shorten the notation, define P1 := |P1|, P2 := |P2|, and

∣∣(R1,R2)
∣∣ :=(

|R1|, |R2|
)

for R1,R2 ⊂ K. Let us define f̃P,F : |PΩ| → |S(PΩ)| as

f̃P,F ([x, i]) := f̃P ([x, i]),

for [x, i] ∈ |PΩ|. Note that f̃P,F defined above and f̃P defined by (7) differ only
by codomain, and S(PΩ) ⊂

∣∣S(PΩ)
∣∣. It is easy to notice that the following holds.

Proposition 3.1 The map F̃P defined by (13) is a combinatorial Ω-representation
of f̃P,F .

3.3 The excision property for the combinatorial sets

We end this section with the following statement indicating that the two-layer
equivalent PΩ of the combinatorial index pair is substantially better than P for
the purpose of the Conley index computation.

Theorem 3.2 The quadruple
(
|PΩ|, |S(PΩ)|

)
satisfies the excision property.

The proof of this theorem is essentially the same as the proof of Theorem
2.5, and we will skip it. As it will be seen in Section 4, this property is crucial
for the correctness of the Conley index computation based on the combinatorial
Ω-sets.
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4 Double-layer Ω-sets and the Conley index

In this section we use the Alexander-Spanier cohomology functor in order to
prove that the cohomological Conley index computed with the use of double-
layer Ω-sets and the corresponding Ω-map coincides with the Conley index of
the original index pair.

4.1 The Conley index computed from the Ω-sets

We begin by considering an index pair P = (P1, P2) for a continuous map f , and
the corresponding Ω-sets and Ω-map. By the excision property for Alexander-
Spanier cohomology (see [21], Theorem 6.6.5), Theorem 2.5 implies the following

Theorem 4.1 The inclusion

(14) ĩP : PΩ ↪→ S(PΩ)

induces an isomorphism in cohomology.

By analogy with (4), we define the homomorphism

(15) Ĩ∗P : H∗(PΩ)→ H∗(PΩ)

as follows:

(16) Ĩ∗P := f̃P

∗
◦ (ĩP

∗
)−1.

We call the above map an Ω-index map.

Theorem 4.2 Under the already established notation, the following diagram
commutes:

(17)

H∗(P ) H∗(P )

H∗(PΩ) H∗(PΩ)

�I∗P

6
h∗

6
h∗

�
Ĩ∗P

and h∗ is an isomorphism.

Proof: Consider the following diagram

(18)

P S(P ) P

PΩ S(PΩ) PΩ

-fP

?

h

?

S(h)

�iP

?

h

-
f̃P

�
ĩP

where fP , f̃P , h and S(h) are defined by the formulas (1), (7), (9) and (10),
respectively. The maps iP and ĩP are the inclusions defined by (2) and (14),
respectively. By Lemmas 2.3 and 2.4, diagram (18) commutes. Therefore, after
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having applied the cohomology functor to (18) and inverted the isomorphisms
i∗p and ĩp

∗
, we obtain the following diagram that also commutes:

(19)

H∗(P ) H∗
(
S(P )

)
H∗(P )

H∗(PΩ) H∗
(
S(PΩ)

)
H∗(PΩ)

�fP∗ �
(i∗P )−1

6
h∗

6
S(h)∗

�
f̃P
∗

�
(ĩP
∗
)−1

6
h∗

By Proposition 2.2, Theorem 4.1, and the excision property for iP , all maps in
this diagram but f∗P and f̃P

∗
are isomorphisms. By formulas (4) and (16), the

horizontal arrows in diagram (17) are compositions of maps corresponding to
the horizontal arrows in diagram (19); therefore, diagram (17) also commutes.
�

An immediate consequence of Theorem 4.2 is the following

Corollary 4.3 The Leray reduction of
(
H∗(PΩ), Ĩ∗P

)
is isomorphic to the Leray

reduction of
(
H∗(P ), I∗P

)
, that is, the Conley index of P with respect to f .

In other words, one can compute H∗(PΩ) and ĨP

∗
instead of H∗(P ) and I∗P ,

respectively, and then continue with the usual procedure of applying the Leray
reduction functor, in order to obtain the cohomological Conley index of P .

4.2 Computing the Conley index with the combinatorial
Ω-sets

Let us now consider a combinatorial index pair P = (P1,P2) for a combinatorial
representation F of f . The key point in justifying the correctness of our approach
is the following

Theorem 4.4 The inclusion

ĩP,F : |PΩ| ↪→ |S(PΩ)|

induces an isomorphism in cohomology.

The proof of this theorem is essentially the same as the proof of Theorem 4.1,
and we will skip it. The only difference is that now we can use a suitable excision
theorem for compact polyhedra (see [15], Theorem 27.2).

Theorem 4.4 ensures that the following homomorphism

(20) ĨP,F
∗

:= f̃P,F
∗
◦ (ĩP,F

∗
)−1 : H∗(|PΩ|)→ H∗(|PΩ|).

is well defined.

Theorem 4.5 Under the already established notation, the following holds:
(i) H∗(|PΩ|) = H∗(PΩ),
(ii) the homomorphisms ĨP,F

∗
defined by (20) and Ĩ∗P defined by (15) are

the same.

13



Proof: Property (i) is a straightforward consequence of the fact that |PΩ| = PΩ.
To prove (ii) it is enough to notice that the following diagram commutes

H∗(PΩ) = H∗
(
|PΩ|

)
H∗(|S(PΩ)|)

H∗
(
S(PΩ)

)
H∗(PΩ) = H∗

(
|PΩ|

)

�f̃P,F
∗

6

f̃P
∗

�
(ĩP
∗
)−1

6

( ˜iP,F
∗
)−1

�

The following corollary follows from Theorem 4.2 and Theorem 4.5.

Corollary 4.6 The Leray reduction of
(
H∗(|PΩ|), ĨP,F

∗)
is isomorphic to the

Leray reduction of
(
H∗(P ), I∗P

)
, that is, the Conley index of P with respect to f .

In other words, one can use PΩ and F̃P to compute the cohomological Conley
index of P with respect to f , without the necessity of additional verification
whether the suitable inclusion map induces an isomorphism in cohomology.

5 Algorithmic computations

The main purpose of introducing the new approach to treating a combinatorial
index pair and map in Section 3 was to make it possible to compute algorithmi-
cally the homological Conley index in an efficient way using full cubical sets and
index pairs as in Definition 1.3. This aim has been achieved, and by Corollary
4.6 one can use our construction even if the combinatorial sets do not satisfy
the excision property, as pointed out in Section 1.

In this section we explain how to use our new approach to the computation
of the index map using the double-layer combinatorial sets, we illustrate the cost
of using this approach in terms of computation time, and we show the advantage
of this approach in comparison with using the index pairs introduced in [11].
As argued in the Introduction, we use the homology computation instead of
cohomology without loss of generality, because we deal with cubical sets which
are compact polyhedra.

The data for all the examples used in this paper, as well as links to related
software can be found at [19].

5.1 Implementing the double-layer topology

Although in our approach one has to deal with double-layer combinatorial sets,
in the actual machine computations one can essentially use the algorithms in-
troduced in [10] for the homology computation of |PΩ| and |S(PΩ)|, as well
as F̃P . The only technical issue is that a change must be made to the cubical
grid structure, because the software must distinguish cubes at different layers,
and one must also take into consideration the fact that in the space |PΩ| the
neighborhood of a cube may look different than in Rn, and thus the adjacency
relation between cubes is slightly more complicated.
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This solution is implemented in the new program homcub2l included in [20].
The program operates on (hyper)cubes which additionally store the information
about their layer number. All the full cubes in the domain and codomain of the
map are split between layer 1 (X \ A) and layer 0 (the complement of X \ A),
and the program stores the boundary between X \ A and A to switch between
the layers while computing adjacent full cubes or boundaries of faces of cubes
at layer 1. The effectiveness of this approach is illustrated with a few examples
listed in Table 1.

example space size homcubes homcub2l liftcubes
name dim of X (old prog) (new prog) + homcubes
Example from [1] 2 17,991 failure 2.19 sec. 3.17 sec.
Rev. Vanderpol 2 64,182 26 sec. 34 sec. 136 sec.
Ex. 1 from [5] 5 6,242 21 sec. 27 sec. 104 sec.
Ex. 2 from [5] 5 29,670 failure 98 sec. 364 sec.
Ex. 3 from [5] 6 10,330 2,220 sec. 4,412 sec. 16,309 sec.

Table 1: Computation times of the index map for a few sample index pairs. See
[19] for the actual data files. The occasional failure in the computations with
homcubes is caused by the lack of the excision property. All the computations
were run on the Intel R© Xeon R© 5030 2.66 GHz processor.

At this point we would like to make a remark that there also exists an easy
way of computing in the double-layer topology without modifying the algorithms
for the homology computation of full cubical sets in Rn and combinatorial maps.
This can be achived by embedding S(PΩ) into full cubical sets in Rn+1 in such
a way that each cube Q at layer 0 is replaced by Q × [0, 1], each cube Q at
layer 1 is replaced by Q × [2, 3], and each cube Q contained in the set P2 on
which the two layers are identified is replaced by Q× [1, 2]. This operation can
be done by the Perl script liftcubes.pl, and then the homology computation
can be carried out by the old program homcubes which follows the algorithms
introduced in [10], both programs available in [20]. Obviously, this approach
gives rise to a slow-down in the computations, which is due to the increase in
the dimension of cubes, as one can see in Table 1. More details on this alternative
approach are given in a note posted at [19].

5.2 An application to real data

As an example of an application of our technique to some real data obtained
in a computer-assisted proof in dynamical systems, we would like to discuss
Example 2 from [5]. The problem faced there was to compute the homological
Conley index of some index pair (P1,P2) such that P1 consisted of 29 670 (hy-
per)cubes in R5, and P2 had 11 403 cubes. Since H∗(|P1|, |P2|) ' (Z, Z21) and
H∗
(
S(|P1|),S(|P2|)

)
' (Z, Z20), one cannot use these sets directly to compute

IP∗ with the software [20], in spite of what is claimed in [5].3 Moreover, trying
to leave in P2 only those cubes which are adjacent to cubes in P1 \ P2 in order
to get a weak index pair as in [11] does not help here, because the excision

3As of writing of this paper, such data was available at the address referred to in [5]:
http://math-www.upb.de/~junge/kot schaffer/code/ex2/
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property is still not satisfied. Therefore, our approach is necessary in this case
to compute the homological Conley index using full cubical sets. Although the
result of the computations differs from the one claimed in [5] (probably their
computations were based on some other data), it has the expected properties
which allow one to use their reasoning to arrive at the same conclusion.

5.3 Comparison of two definitions of index pairs

In the remainder of this section, we would like to discuss some examples that
explain the reasons why we insist on using Definition 1.3 of a combinatorial
index pair (which leads to the problems with the excision property) instead
of accepting the definition suggested in [11] (which immediately implies the
excision property, see Theorem 8.1 and Proposition 8.2 therein).

In a recently developed computational approach to the Conley decomposition
theorem [2, 9], isolating neighborhoods of Morse sets are automatically created.
In order to compute the Conley index of those sets, it is necessary to construct
suitable index pairs, which may not be easy in general. However, if N denotes a
combinatorial representation of an isolating neighborhood of a Morse set, and F
denotes the combinatorial cubical multivalued map, then

(
N∪F(N ),F(N )\N

)
satisfies Definition 1.3, which instantly solves this problem. This is especially
important if the Conley index computation needs to be done for a large number
of automatically generated Morse sets, like in [1]. Occasional failures caused
either by the lack of the excision property of by trying to construct a more
demanding index pair would have a detrimental effect on the reliability of such
computations. It is worth to note that in the actual computations discussed
in [1] index pairs without the excision property indeed appear several times,
which proves the usefulness of our approach; one such example is mentioned in
Table 1, another is illustrated in Figure 3.

Figure 3: A sample index pair obtained in the actual computations described
in [1] for a nonlinear 2-dimensional Leslie population model: |P1\P2| is indicated
in black, |P2| is shaded in dark grey, and |F(P2) \ P2| is plotted in light grey.
An additional homology generator appears in H∗

(
|P1 ∪ F(P2)|, |P2 ∪ F(P2)|

)
because of the intersection of two squares which have a common vertex indicated
by an arrow in the magnified area.
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In the following examples we construct a few index pairs that satisfy either
our definition, or the one introduced in [11], we point out the differences, and we
explain the reasons for these differences. We use the algorithm introduced in [17]
to construct an index pair as in Definition 1.3. Although in [11] the author does
not mention any algorithm for the construction of his index pairs, it seems to be
relatively straightforward to come up with one (see [25] for some suggestions).

We consider three different maps. The first one is the well-known Hénon map

h : R2 3 (x, y) 7→ (1 + y/5− ax2, 5bx) ∈ R2

with a = 1.4 and b = 0.2, as in the Examples section of [11]. The other two maps
are the translations by the time 71

128 and − 35
128 , respectively, in the dynamical

system induced by the Vanderpol differential equations in R2

x′ = −y + x3 − x,

y′ = x.

To make these two maps more interesting, we embed this system in R3 by adding
an equation similar in spirit to

z′ = −z

to make the plane z = 0 stable, so that the dynamics is essentially limited to
this plane, and all the discrete trajectories in the space approach it.

We use the grid size 1
64 for the Hénon map, and 1

32 for the two maps that
come from the Vanderpol equations. We obtain some rough approximations
of the isolated invariant sets we are interested in from numerical simulations,
and then we run both algorithms to construct index pairs. We compare the
size of the constructed set P1 \ P2, as well as the number of cubes on which
the map F was computed. The former is crucial for the effectiveness of the
homology computation, and the latter may be very important if the map F
comes from some expensive rigorous numerical computations. Sample results of
computations are listed in Table 2.

Hénon Vanderpol Reversed
map map Vanderpol

(a) (b) (a) (b) (a) (b)
card(P1 \ P2) 307 295 1,304 1,270 2,056 2,056
card domF 610 425 5,802 1,270 8,082 3,122

Table 2: Sizes of index pairs constructed with different algorithms: (a) satisfying
the definition in [11], (b) satisfying Definition 1.3. The number of cubes on which
the map F is computed is also specified.

The first noticeable advantage of our combinatorial index pair is that the
map is computed on much fewer cubes. This is due to the fact that in our
definition we do not impose any conditions on a cubical neighborhood of the set
P1 \ P2.

The second advantage, the size of P1 \P2, is not that profound, but in some
cases may be important. The reason for this difference comes from the fact that,
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roughly speaking, in our index pair we do not require the isolation at the level
of cubes, but rather this isolation is included in the “int” part of condition (5).

A simple program which does the computations described in this subsection
is available at [19].
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