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Automatic Homology Computation

with Application to Pattern Classification

By

Marcio Gameiro∗ and Pawe l Pilarczyk∗∗

Abstract

We briefly introduce the approach to homology computation based on rectangular grids, as

opposed to the usual approach based on simplices, and we explain how homology, this important

topological invariant, can be effectively computed in an algorithmic way. We also point out

some specific applications of this method of homology computation to the classification of

patterns that appear in numerical simulations of PDEs or come from physical experiments.

§ 1. Introduction

In numerical simulations or physical experiments, complicated spatial-temporal
patterns may appear, and their complexity needs to be assessed. This gives rise to the
question of finding some computable quantitative measures for their complexity. In this
paper we discuss the application of algebraic topology for this purpose.

We begin with a brief introduction to the computational homology which we use
to quantify the topological pattern complexity. Then, in the next section, we discuss
some applications of this algorithmic tool to the classification of patterns.

§ 2. Cubical Homology

The computation of homology of a topological space is based on its decomposition
into a cellular complex, so we begin with the definition and illustrations of cellular
complexes based on rectangular grids (see [5] for more details).
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Let H denote the set of all the n-dimensional hypercubes in Rn of edge length 1 and
vertices in Zn. Elements of H are called full cubes. Any intersection of two full cubes is
called an elementary cube (or cube for short). It is easy to see that an elementary cube
is a product of intervals of length 1 or 0, with integral endpoints, that is,

Q = I1 × I2 × · · · × In

for Ii = {ki} or Ii = [ki, ki + 1], where ki ∈ Z. Note that a full cube is a particular case
of an elementary cube. The dimension of an elementary cube is the number of intervals
with length 1 in the formula above, that is, dimQ := card {i : |Ii| > 0}.

If A is a finite set of (full) cubes, then |A| :=
⋃
Q∈AQ (the union of these cubes) is

called a (full) cubical set. Note that (full) cubical sets are always compact polyhedra.
If A is a cubical set, then the group of q-dimensional chains Cq(A) is defined as

the free abelian group generated by all the q-dimensional elementary cubes contained
in A. Note that Cq(A) ∼= 0 if there are no q-dimensional elementary cubes contained in
A. In particular, this holds true for all q < 0 and q > n. The (algebraic) generator of
Cq corresponding to the elementary cube Q ⊂ A is denoted by Q̂. With this definition,
each chain can be perceived as a formal combination of elementary cubes with integral
coefficients.

Figure 1. A 2-dimensional rectangular cell with its orientation indicated, as well as
orientation of its faces. ∂

(
Q̂
)

= −B̂A− B̂D + D̂C + ĈA, ∂
(
B̂A
)

= B̂ − Â, ∂
(
Â
)

= 0,
etc.

The boundary operator is defined on the generators Q̂ of Cq in the following way
(compare with Figure 1). Assume Q = I1 × · · · × In ⊂ Rn and d = dimQ. Let the
non-degenerate intervals in the product that defines Q be denoted by Ij1 = [kj1 , kj1 +
1], . . . , Ijd = [kjd , kjd +1]. The left-hand-side and the right-hand-side (d−1)-dimensional
face of Q in the direction m is given by the following formulas, respectively:

Q−m := I1 × · · · × [kjm , kjm ]× · · · × In
Q+
m := I1 × · · · × [kjm + 1, kjm + 1]× · · · × In
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With this notation, the boundary operator is defined on generators of Cq as follows:

∂
(
Q̂
)

=
dimQ∑
m=1

(−1)m
(
Q̂+
m − Q̂−m

)
and then this definition is extended to a homomorphism Cq → Cq−1.

Figure 2. Geometric illustration of cycles: A 1-dimensional cycle can be understood
as a closed loop; the loop at the right-hand side is a boundary of the shaded area; the
loop at the left-hand side is not a boundary of any chain, so it gives rise to a homology
generator. The two points at the right-hand side can be joined by a 1-dimensional chain,
so they differ by a boundary, and they are equivalent in homology; the two points in
the middle, however, correspond to different homology generators.

The important property of the boundary operator is that ∂ ◦∂ ∼= 0. This allows one
to define the homology groups of A in the following way. Let Bq(A) := im ∂q+1 ⊂ Cq

be the group of q-dimensional boundaries in A, and Zq(A) := ker ∂q ⊂ Cq be the
group of q-dimensional cycles in A. Then the quotient group Hq(A) := Zq(A)/Bq(A)
is well defined and it is called the q-th homology group of A. It is a finitely generated
commutative group. It is a well known fact from algebra (see [5]) that every such group
has a simple canonical form

G ∼= Zpn1
1
⊕ · · · ⊕ Zpnk

k
⊕ F,

where p1, . . . , pk are prime numbers, n1, . . . , nk are positive integers, and F = Z⊕· · ·⊕Z
is a free group. This factorization is unique (up to the order of factors). In particular,
the rank of F in the factorization of Hq(A) is denoted βq(A) and is called the q-th Betti
number of A.

The definition of homology as the quotient group suggests the geometric interpre-
tation of homology as a means of counting those cycles which are not boundaries of any
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other cube or chain (see Figure 2). In general, the Betti numbers reflect the topological
complexity of a cubical set. More precisely, β0 equals the number of connected compo-
nents, β1 indicates the number of holes (tunnels in 3D), and β2 represents the number
of cavities (see Figure 3).

Figure 3. Betti numbers count holes. For the sphere, β0 = 1, β1 = 0, and β2 = 1. For
the cylinder with open ends, β0 = 1, β1 = 1, and β2 = 0. For the torus surface, β0 = 1,
β1 = 2, and β2 = 1.

Given geometric patterns in terms of bitmap images, independent of whether they
come from numerical simulations, or from photographs taken from physical experi-
ments, one can treat these images as full cubical sets if each pixel is identified with
a 2-dimensional square, as illustrated in Figure 4. The same holds true for higher-
dimensional bitmap data, in particular, each voxel corresponds to a 3-dimensional cube.

Figure 4. Pixels of a 2-dimensional computer image give rise to 2-dimensional full cubes
(squares) in R2, as seen at the magnification of a sample black-and-white bitmap image,
and together they form a cubical set.

Since the algebraic computations that follow the definition of the homology groups
directly are very time-consuming, advanced algorithms based on the transformation of
the matrix of the boundary homomorphism into the Smith Normal Form are used in
the actual software [1]. Moreover, prior to the algebraic computations, the cubical sets
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to be processed are reduced in a geometric way. The general idea of one type of the
reductions is to remove cubes from the set of cubes, provided this removal does not
change the homology of the corresponding cubical set. Another idea is called free face
collapses, and its key is to remove pairs of elementary cubes such that one cube is a face
of the other cube, and only of that cube. Figure 5 illustrates such cases. The reader is
referred to [7, 8] for more details on these reductions. The software [1] we use in this
research does all these reductions automatically to minimize the amount of algebraic
data that has to be processed.

Figure 5. Some full cubes that can be removed from the cubical set are shaded dark at
the left-hand side. Free faces are indicated with arrows at the right-hand side.

§ 3. Applications to Pattern Classification

The Computational Homology software [1] described above has been applied to
patterns arising in numerical simulations of the Cahn-Hilliard Equation [4] and numer-
ical simulations of Spiral Wave Patterns [3], as well as in experiments of Spiral Defect
Chaos in Rayleigh-Benard Convection [6].

In this paper we focus on the application of computational homology to spiral wave
patterns arising in simulations of the FitzHugh-Nagumo system

(1)
ut = ∆u+ ε−1u(1− u)(u− v+γ

α )
vt = u3 − v.

with Neumann boundary conditions on the rectangular domain Ω = [0, 80] × [0, 80].
We study (1) at α = 0.75, γ = 0.06 and we vary the parameter ε. Following [3]
and references therein, we produce patterns by thresholding the solutions as indicated
in Figure 6. Since we want to understand the time evolution of the time dependent
excited media

E(t) = {x ∈ Ω | u(x, t) ≥ 0.9},

we create “movies” of the excited media, that is, we consider the subsets of Ω × [0, τ ]
of the form

M(τ1, τ2) :=
⋃

t∈[τ1,τ2]

E(t),
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Figure 6. (Color online) Patterns generated by thresholding the solutions of (1) as
follows: the light gray (red) region corresponds to excited points (u ≥ 0.9), dark gray
(blue) to the quiescent region (u ≤ 0.1), and black to the reaction zone (0.1 < u < 0.9).
The top row refers to 1/ε = 14.0, the middle row to 1/ε = 12.0 and the bottom row to
1/ε = 11.5. Each row shows different snapshots of the same solution.

and compute the homology groups of these 3-dimensional sets. Since these sets are
embedded in R3, their homology is completely characterized by their Betti numbers. For
each value of ε we compute the Betti numbers βi(n, ε) of M

(
10(n−1), 10(n−1)+1000

)
for n = 1, 2, . . . , 10000, thus producing time series of Betti numbers

Bi(ε) := {βi(n, ε) | n = 1, 2, . . . , 10000}, for i = 0, 1, 2.

As already pointed out in [3], β2(n, ε) ≡ 0, and β0(n, ε) is piecewise constant
and takes on fairly small values. The time series B1(ε), however, proved to be quite
interesting. Figure 7 shows plots of some time series. Notice that we can see a clear
difference in the plots of β1 for the two time series shown in Figure 7, thus it seems
that the Betti numbers can be used to detect the fact that the corresponding patterns
originated from different parameter values. Notice also that we cannot see this difference
so clearly on the corresponding patterns in Figure 6.

In fact, as it was shown in [3], the mean value of the time series of β1 is essentially
a monotonically increasing function of ε. The same holds true for the time series of β0,
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Figure 7. Time series of Betti numbers. The top row refers to 1/ε = 12.0, and the
bottom row to 1/ε = 11.5. The first column shows β0, and the second shows β1. The
time series corresponding to 1/ε = 14.0 are not plotted because they are piecewise
constant and take on a limited number of small values.
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Figure 8. Mean values of the time series of β0 and β1 as a function of ε.

as it is shown in Figure 8. Therefore, it seems that it may be possible to use the Betti
numbers to characterize the parameter values from the patterns.

In [3] the complexity of the patterns was characterized by means of Lyapunov
exponents, computed from the time series of β1. In this paper we try to assess the
complexity by means of entropy, computed as follows: For each value of ε, we describe
the states of the system by vectors of the form (β0, β1), and then we count how many
times a given state (β0, β1) appears on the time series to compute the probability of
that state. Finally, we compute the entropy at the given value of ε by

E(ε) =
∑
i

pi log(1/pi),

where pi denotes the probability of being in the state i, and the index i spans over all
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Figure 9. Entropy as a function of ε. In both plots, the stars show the entropy computed
directly from the solution u of the PDE. The diamonds and the squares are the entropies
of time series of Betti numbers computed from patterns generated by solving the PDE
with two different initial conditions. The entropies indicated by the diamonds and
the squares on the left plot were computed using (β0, β1) to describe the states of the
systems, while only β1 was used on the right plot.
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Figure 10. Mean values of the time series of β1/β0 as a function of ε. This gives basically
the average number of tunnels per component, except that we are not excluding small
components.

the different states attained by the system. The left plot of Figure 9 shows the entropy
computed as described above. Since in [3] only β1 was used to compute the Lyapunov
exponents, for the sake comparison, we also computed the entropy as described above,
but using only β1 instead of (β0, β1) to characterize the states attained by the system.
The result is shown in the right plot of Figure 9. As in [3], to check our results, we
computed the entropy directly from the solution values of the PDE in the following way:
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We picked up a point x in the domain Ω, and computed the solution u at this point
for 10000 time steps, creating the time series {u(x, tk) | k = 0, 1, . . . , 10000}. We then
used this time series to compute the entropy, where the states of the system are now
characterized by the values of u(x, tk), and two values are considered to describe the
same state if they agree to at least the first five decimal digits. This result is also shown
in Figure 9. While the entropy is computed over the states attained by the system in a
finite amount of time, its value seems to asymptote to a constant for long time series.

The positive entropy values confirm the complicated spatio-temporal dynamics
characterized in [3] by positive Lyapunov exponents. Notice that the Betti numbers
capture the spatio-temporal complexity of the patterns, while the solution at a point
x ∈ Ω only measures the temporal complexity. This, added to the fact that the solu-
tions are not spatially complex for small values of ε (see Figure 6), may explain why
the entropies from Betti numbers and from the solution u behave differently for small
values of ε.

Another interesting fact is that the mean values of Betti numbers are increasing
as a function of ε, while the entropy is essentially constant (except for small ε). We
believe that this is due to the fact that, as ε increases, the number of components and
the total number of tunnels increase, but the number of tunnels per component remains
basically constant. To see this, in Figure 10 we plotted the mean values of the time
series of β1/β0. The reason the graph is not quite constant is the existence of small
components with no tunnels. If we take the quotient of β1 by the number of components
that contain tunnels (the average number of tunnels per component), then the result
would be fairly constant.

§ 4. Final Remarks and Conclusion

As the results illustrated above show, the homology computation proves to be a
novel and effective tool that gives a computable means for the quantitative measurement
of the topological complexity of patterns.

It is worth mentioning again that the software used in this research is dimension
independent. This feature allows one to analyze higher-dimensional dynamics, as well
as include the time as an extra dimension to assess the complexity of patterns not only
at specific time snapshots, but also their evolution in time, like it was done in this paper.

Although the currently available software is highly efficient for low dimensions, the
significantly larger cost of homology computation in dimensions four or higher gives a
good motivation for further development of this powerful tool.
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