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Abstract. We discuss an application of a topological-numerical method for proving
the existence of a periodic trajectory in a smooth dynamical system in R

n where
a periodic trajectory is numerically observed. The method is based on the Conley
index theory and rigorous numerics for ODEs and it is a generalization of the method
introduced in [13]. We apply this method to the Rössler equations.

1. Introduction. The aim of the paper is to discuss a specific application of a
recently developed topological-numerical method for proving the existence of a pe-
riodic trajectory in a smooth dynamical system in R

n where a periodic orbit is
numerically observed. The method is based on the Conley index theory [3, 8] and
rigorous numerics for ODEs [6, 12, 21] and it is a generalization of the method
introduced in [13, 14]. We discuss an application of this method to the Rössler
equations and we prove the following

Theorem 1. The Rössler system [18]

ẋ = −(y + z),
ẏ = x + by,
ż = b + z(x − a)

(1)

for a = 3.1 and b = 0.2 admits two periodic orbits.

The existence of one of the orbits was proved in [11]. This is the stable periodic
orbit that emerges in the period-doubling bifurcation observed in numerical simula-
tions when the parameter a is increased from 2.2 to 3.1. However, with the increase
of the value of a, the stable periodic trajectory which exists for a = 2.2 (proved
in [13]) becomes unstable and the method used in [13] does not allow one to prove
its existence. This problem is addressed in this paper.

The existence of the periodic orbits considered in Theorem 1 was conjectured by
Hale and Koçak in [4], where also numerical evidence of the existence of the periodic
orbits in this system was given.

Needless to say, periodic solutions to ordinary differential equations in R
n are

among the basic objects of interest in the theory of dynamical systems. Because
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of this, developing an easy-to-apply method for proving their existence in concrete
dynamical systems is of significant importance.

As indicated in [13], our method has some advantages over the methods based
on the analysis of the Poincaré map. The applications discussed in [11, 13] prove its
usefulness. However, the method from [13] can only be applied to stable periodic
trajectories. In this paper we discuss its generalization which may be applied to
virtually any autonomous differential equation in R

n which exhibits in numerical
simulations a hyperbolic periodic trajectory. Due to substantial difference in com-
plexity of the problem considered here in comparison to [13], new algorithms and
techniques had to be developed to address this problem.

It needs to be mentioned that our approach is constructive in the sense that
the periodic orbit is proved to be in an effectively constructed neighborhood of the
numerically observed trajectory. This neighborhood is obtained as a set built of
(hyper)cubes and may be a subject of further analysis or visualization.

Moreover, one should notice that the combinatorial procedure for finding an index
pair described in Section 3 may have more applications than the one discussed in this
paper and in some situations may be a good alternative to the procedure introduced
in [20].

2. Preliminaries. Consider the differential equation

ẋ = f(x), (2)

where f : R
n → R

n is a vector field of class C1. Such a vector field induces a
dynamical system ϕ on R

n under some additional assumptions, for example, if f
is bounded. For the purpose of this paper, we can assume this without loss of
generality, because our method is local, that is, we can restrict our attention to a
bounded region in R

n within which we look for a periodic trajectory, and we do
not even need to know f outside this region. Therefore, if (2) does not induce a
dynamical system on R

n, we can modify f in such a way that f(x) = 0 if ‖x‖ is
large enough, for instance, beyond the range of representable real numbers we use
in numerical computations.

We follow the terminology and notation of [13]. In particular, we work with the
time-t discretization ϕt of the flow ϕ with some fixed t > 0. As justified in [13] (see
also [10]), if we use this discretization ϕt to find an isolating neighborhood N and
to compute the Conley index of its invariant part S, then the result is also valid for
the flow, that is, N is an isolating neighborhood with respect to the flow, S is its
invariant part with respect to the flow, and the Conley index of S with respect to
the flow coincides with the one computed for ϕt.

To prove the existence of a periodic orbit we verify the assumptions of the fol-
lowing theorem, which is a special case of Corollary 1.4 in [8]:

Theorem 2. Assume N is an isolating neighborhood for the flow ϕ which admits a
Poincaré section Ξ. If N has the cohomological Conley index of a hyperbolic periodic
orbit, then inv(N, ϕ) contains a periodic orbit.

Unfortunately, the definition of an index pair proposed in [8] is too restrictive
for our purpose. Therefore, we use the following definition introduced by Szymczak
in [19], where it is also proved that this index pair can be used to compute the
Conley index as in [8].

Definition 1. A pair of compact sets (P1, P0) is called an index pair for an isolated
invariant set S with respect to a continuous map f if
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(1) cl(P1 \ P0) is an isolating neighborhood for S,
(2) if x ∈ P0, then f(x) 6∈ P1 \ P0,
(3) if x ∈ P1 and f(x) 6∈ P1, then x ∈ P0.

3. Construction of an Index Pair. The algorithm introduced in [13] is capable
of constructing an index pair (P1, P0) only if the exit set P0 is empty, and therefore
cannot be used here. Although the algorithm introduced in [20] does not have this
limitation, it is difficult to apply here, because it requires an apriori bound for
the region containing the index pair to be constructed. Therefore, we use another
algorithm for the construction of an index pair. The substantial difference between
this algorithm and the one introduced in [20] is that the latter constructs an index
pair contained in a given set, and thus requires the computation of the map F on
the entire initial set in which the index pair is going to be contained, which may be
very costly due to the huge size of that set, whereas our new algorithm constructs
an index pair containing a given initial set, and therefore requires the computation
of F only on the constructed sets.

Recall from [13] that

H = {[k1d, (k1 + 1)d] × · · · × [knd, (kn + 1)d] | ki ∈ Z for i = 1, . . . , n},

where d > 0 is fixed, and that a map F : A → 2H is called finite if A is finite and
F(a) is a finite subset of H for each a ∈ A.

Algorithm 1.

function IndexPair (Q1, Q0: finite subset of H, F : A → 2H: finite
multivalued cubical map): pair of finite subsets of H;

begin

Q0 := Q0 ∪ (F(Q1) \ Q1);
if Q0 6⊂ A then return (∅, ∅);
while F(Q0) ∩ Q1 6= ∅ do

begin

choose any a ∈ Q0 such that F(a) ∩ Q1 6= ∅;
if F(a) 6⊂ A then return (∅, ∅);
Q0 := Q0 ∪ (F(a) \ Q1);
Q1 := Q1 ∪ {a};
Q0 := Q0 \ {a};

end;
return (Q1,Q0)

end.

Note that the algorithm should be invoked with Q1 ⊂ A, or otherwise in the first
line F(Q1) is not defined.

Recall that the set represented by A ⊂ H is denoted by |A| :=
⋃

a∈A
a ⊂ R

n.

A finite multivalued cubical map F : A → 2H is called en enclosure of a continuous
map f : |A| → R

n if f(a) ⊂ int|F(a)| for every a ∈ A.

Theorem 3. Let F : A → 2H be an enclosure of a continuous map f : R
n → R

n,
and let (Q0

1,Q
0
0) be a pair of disjoint subsets of A. Denote by (Q1,Q0) the pair

returned by Algorithm 1 invoked with Q0
1, Q0

0 and F . Then the pair (P1, P0) :=
(|Q1 ∪Q0|, |Q0|) is an index pair for some isolated invariant set S with respect to f
and |Q1| is an isolating neighborhood for S.

For proof of Theorem 3 the reader is kindly requested to consult [16].
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4. Construction of the Proof. In this section we describe how we verify the
assumptions of Theorem 2 in order to prove that a given ODE admits a periodic
trajectory.

Before we proceed, let us notice that the Conley index of the constructed index
pair (P1, P0) cannot be computed with the algorithms that were used in [13]. The
first reason for this is the fact that—in contrast to the situation considered in [13]—
the exit set P0 can be nonempty, and therefore the map induced by f in relative
homology of the pair (P1, P0) must be computed. In [13] an algorithm from [1] (see
also [7]) was used to construct a chain map suitable for homology computation,
but the authors of [1] do not address the issue of relative homology computation.
Moreover, the reduction of the cubical sets ([13], §4), which was a crucial step in
decreasing the size of data to process, needs to be improved to handle pairs of sets
and relative homology. In addition to that, in our case the data for the computation
of the map induced in homology usually turns out to be too large to be processed
by the algorithm introduced in [1] in reasonable time, even after the reduction of
the cubical sets.

The above-mentioned issues were among the motivations for the development of
a new algorithm for homology computation of acyclic multivalued cubical maps,
which is capable of handling relative homology, contains an improved version of
geometric reduction of pairs of cubical sets analogous to the one introduced in [13],
and uses an approach substantially different from the one suggested in [1] for the
homology computation of maps, which makes it much more efficient. This algorithm
has been developed recently and is described in [9] (see also [15]).

The proof of the existence of a periodic trajectory begins with the construction of
an index pair using Algorithm 1 for an initial set Q0

1 taken as a rough approximation
of the periodic trajectory whose existence we expect to prove. The set Q0

1 can be
obtained in numerical experiments.

We compute an enclosure F (to use in Algorithm 1) for the time-t map ϕt for
the flow ϕ generated by the ODE of interest with the software package capd [2]
which uses advanced numerical methods to provide rigorous bounds for images of
cubes under the map ϕt (see [6, 12, 21]).

In the next step we compute the Conley index of the constructed index pair.
Finally, the verification of the existence of a Poincaré section, which is one of the

assumptions of Theorem 2, can be performed in the same way as described in [13].
In a more detailed way, the method for proving the existence of a periodic tra-

jectory in a given continuous dynamical system consists of the following steps:

1. Fix d > 0 and find a finite set Q0
1 ⊂ H that roughly approximates the trajec-

tory of interest.
2. Fix a finite set A ⊂ H within which one expects to construct the index pair.
3. Fix t > 0 and run Algorithm 1 with Q0

1, Q
0
0 := ∅ and an enclosure F of ϕt.

4. Compute the Conley index of the index pair with respect to ϕt.
5. Prove that the isolating neighborhood |Q1| admits a Poincaré section.

Note that in Step 3 the map F does not have to be computed on the entire set A.
One can program a subroutine that is invoked for each cube a ∈ A when its image
needs to be known, that is, when a ∈ Q1 ∪ Q0. Therefore, taking A as a huge set
containing our region of interest does not increase the complexity of computations,
but may be very useful if the desired size of the index pair is not known.

Moreover, in Step 4 the map F already computed in Step 3 can often be used to
compute the index map, which can save a significant amount of computations.
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5. Application to the Van der Pol equations. Let us show an application of
the described method to an easy-to-illustrate planar example. Consider the Van der
Pol equations in the form of an autonomous ODE as discussed in [5]. This ODE
has a stable periodic trajectory for a = 1.0 (a limit cycle), so let us reverse the time
to make this trajectory unstable:

ẋ = −y + x(x2 − a),
ẏ = x.

(3)

Note that the existence of the periodic trajectory here for a = 1.0 can be shown
in a much more direct way; however, we consider this ODE as a straightforward
illustration of the way our method is applied.

Figure 1. Sets constructed for the Van der Pol equations with
reversed time.

Let d := 1
32

and t := 1
4
. Let A := [−2, 2]2 and take A := {a ∈ H | a ⊂ A}. We

run Algorithm 1 with Q0
1 shown in Figure 1 in light gray, Q0

0 := ∅ and the map F
computed with the capd package [2] as explained in Section 4. The obtained set Q1

is indicated in Figure 1 as the union of the two sets in two shades of gray (note that
Q0

1 ⊂ Q1), and Q0 is indicated in black. The results of the homology computation
of the index pair are as follows:

H0(P1, P0) ∼= 0,

H1(P1, P0) ∼= Z,

H2(P1, P0) ∼= Z.

The computation of the maps in homology proves that the inverse of the isomor-
phism induced in homology by the inclusion i : (P1, P0) → (P1∪ϕt(P0), P0∪ϕt(P0))
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composed with the map induced by ϕt : (P1, P0) → (P1 ∪ϕt(P0), P0 ∪ϕt(P0)) is the
identity. Therefore, the Conley index of the index pair (P1, P0) is the index of a
hyperbolic periodic trajectory.

We use the technique introduced in [13] to show that the constructed isolating
neighborhood admits a Poincaré section. As a result we obtain the following

Theorem 4. The system (3) for a = 1 admits a periodic trajectory.

6. Application to the Rössler Equations. In this section we discuss an appli-
cation of our method to the Rössler equations (1) and we give a computer assisted
proof of Theorem 1. The results of computations mentioned here are available
in [17].

Define Ξ := {0}×[−6, 3]×[−1/2, 1/2] and Q := [−1, 0]×[−9/2,−3]×[−1/2, 1/2].
One can use the elementary technique from the proof of Lemma 18 in [13] to prove
the following

Lemma 1. The Rössler vector field (1) is transverse to Ξ, and ϕ(q, R+) ∩ Ξ 6= ∅
for each q ∈ intQ.

Proof of Theorem 1. The existence of one periodic trajectory was already proved
in [11]. We will prove the existence of another one. Let d := 1

128
. Take Q0

1 to
be the smallest set of cubes in H which covers an approximation of the unstable
periodic trajectory observed in numerical simulations. Let A := [−8, 8]2 and define
A := {a ∈ H | a ⊂ A}. Run Algorithm 1 with Q0

1, Q0
0 := ∅ and the map F

computed with the capd package [2] as explained in Section 4. The neighborhood
N := |Q1| and the set Q0 returned by this algorithm are illustrated in Figures 2
and 3, respectively.

The Conley index of the pair (P1, P0) computed with the algorithms introduced
in [9] is the index of a hyperbolic periodic trajectory.

We follow the way of reasoning from [13] (Section 7) and we use the sets Ξ and Q
which appear in Lemma 1 to prove that N admits a Poincaré section.

In this way we have verified that the assumptions of Theorem 2 are satisfied. It
follows that the set N contains a periodic orbit.

Since N and the neighborhood obtained in [11] are disjoint, the periodic tra-
jectory whose existence has just been proven is different from the one considered
in [11]. Therefore, the Rössler system (1) indeed admits two periodic solutions.

7. Remarks and Comments. In this section some technical remarks on various
aspects of the computations are gathered.

First, let us point out that the procedure introduced in Section 4 can fail in
several places. We discuss here two cases in which this can happen and we suggest
possible ways of correcting this situation.

In Step 3, if Algorithm 1 returns (∅, ∅), then this means that the algorithm tries
to construct an index pair larger than we expect. To fix this problem one can choose
different d, t and/or A and try running Algorithm 1 again.

In Step 4, if the computed index is different from the index we expect, then
probably the isolating neighborhood is too large and contains much more than we
expect. In this case it is recommended to decrease d and/or change t and try
the entire procedure again. Actually, this situation happens if we take d = 1

64
in

Section 6: The isolating neighborhood N := |Q1| constructed for this value of d
contains not only the unstable trajectory, but also the stable one. This problem
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Figure 2. Projections of the set |Q1| to the planes XY and XZ.

Figure 3. Projections of the set |Q0| to the planes XY and XZ.

was fixed by decreasing d to 1
128

. It is worth to mention here that one can use N to
prove that there exists one more bounded trajectory in addition to the two periodic
trajectories. This is due to the fact that the Conley index of N turns out to be
different from the direct sum of the Conley indices of the periodic trajectories.

Moreover, it is sometimes worth to adjust the multivalued cubical map which
we want to use for homology computation, as well as the index pair obtained by
Algorithm 1, in order to speed up the homology computation with the algorithm
introduced in [9]. This is one of the reasons why the initial neighborhood for the
periodic trajectory considered in Section 5 was taken much larger than the minimal
subset of H which covers the orbit observed in numerical situations (see Figure 1).
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