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1 Introduction

Despite the enormous number of papers devoted to the problem of the exis-
tence of periodic trajectories of differential equations, the theory is still far
from being satisfactory, especially when concrete differential equations are
concerned, because the necessary conditions formulated in many theoretical
criteria are difficult to verify in a concrete case. And even if some methods
work for some concrete equations, it is usually difficult to carry them over to
other problems. Thus quite often the only available method is to experiment
numerically. Unfortunately, such an approach cannot be treated as reliable.

All this makes the problem a natural field of research in rigorous nu-
merics. However, only recently some new techniques were developed, for
which the amount of computations necessary is in the reach of present-day
computers (see [5, 6, 16]). Especially powerful seem to be methods based
on topological invariants like the Conley index [5] and the fixed point index
[16].

In this paper we want to sketch an approach to the existence of periodic
solutions of differential equations based on the discrete Conley index and
rigorous numerics of dynamical systems. For details the reader is referred to
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[12, 13]. We briefly discuss the result of applying this method to two different
periodic orbits in the Rössler equations and two periodic trajectories in the
Lorenz equations.

2 Representable sets and maps

Let X,Y be locally compact metric spaces. For G ⊂ P(X), A ⊂ X and
C ⊂ G put

G(A) := { a ∈ G | a ∩A 6= ∅ },

|G| :=
⋃
G,

〈C〉 := 〈C〉G := {x ∈ X | G(x) = C }.

A family G ⊂ P(X) will be called a grid in X if

(i) every element of G is a non-empty compact set,

(ii) for every compact K ⊂ X we have 1 ≤ cardG(K) <∞,

(iii) for every C ⊂ G we have cl 〈C〉 =
⋂
C.

A typical example of a grid in Rd is a set of d-dimensional hypercubes
of the same size η > 0 which fill the space:

Gη := {
d∏
i=1

[kiη, (ki + 1)η] | ki ∈ Z, i = 1, . . . , d}.

Define the diameter of a grid G as

diamG := sup {diam a | a ∈ G }.

A set E is called an elementary representable set if E = 〈C〉 for a finite
subfamily C ⊂ G. A set A is called representable if it is a finite union of
elementary representable sets. A set A is called strongly representable if it
is a finite union of a subfamily of G.

Theorem 2.1 (see [10]) The family of representable sets is closed under the
set-theoretical union, intersection, difference as well as topological closure
and topological interior.
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The family of elementary representable sets over a grid G will be further
denoted by ER(G), and the family of all representable sets by R(G).

A multivalued map F : X ⇒ Y is a map F : X → P(Y ). Its domain and
image are defined as follows:

domF := {x ∈ X | F (x) 6= ∅ },

imF :=
⋃
x∈X

F (x).

The image and preimage of a set under a multivalued map is defined in the
following way:

F (A) :=
⋃
x∈A

F (x),

F−1(B) := {x ∈ X | F (x) ∩B 6= ∅ }.

A multivalued map F : X ⇒ Y is called representable over grids G, H in X,
Y respectively if it satisfies the following conditions:

(i) cardG(domF ) <∞,

(ii) for every x ∈ X the set F (x) is representable,

(iii) if E is an elementary representable set then F|E = const.

Theorem 2.2 (see [10]) If A ∈ R(G), B ∈ R(H) and F is a representable
multivalued map, then

domF, F−1(B) ∈ R(G),
F (A) ∈ R(H).

Let N ⊂ X be a compact representable set. Define

FN : X 3 x→ N ∩ F (x) ⊂ X.

Proposition 2.3 FN is representable.

We say that a multivalued map F : X ⇒ Y is upper semicontinuous if
for every x ∈ X the set F (x) is compact and for every neighborhood U of
F (x) there exists a neighborhood V of x such that F (V ) ⊂ U .

If a sequence of multivalued maps {Fn} is given then we say that this
sequence converges to a multivalued map f , which we denote by Fn → f , if
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the graphs of Fn converge to the graph of f as subsets of X×Y with respect
to the Hausdorff metric.

A multivalued map f is called singe-valued if card f(x) ≤ 1 for every
x ∈ X and may be identified with a map X−→◦ Y defined on a subset of X.

A single-valued map f : X−→◦ Y is called a selector of a multivalued map
F : X ⇒ Y if f(x) ∈ F (x) for every x ∈ dom f (in particular, dom f ⊂
domF ).

Assume X,Y are two locally compact metric spaces with given grids G,
H. Let f : X−→◦ Y be a continuous map defined on a subset of X. We say
that F : X ⇒ Y is a representation of f if F is representable and f is a
selector of F .

Theorem 2.4 (see [9]) Assume Gn, Hn are sequences of grids in X, Y
respectively, such that diamGn → 0 and diamHn → 0. Let f : X−→◦ Y be a
Lipschitz function such that dom f is relatively compact. Then there exist
sequences of multivalued maps Fn, Gn : X ⇒ Y such that

(i) Fn, Gn are representations of f ,

(ii) Fn is lower semicontinuous and Gn is upper semicontinuous,

(iii) Fn → f , Gn → f .

3 The Conley index

Let f : Rd → Rd be a homeomorphism.
If N ⊂ Rd then the set

InvN := Inv(N, f) := {x ∈ N | ∀n ∈ Z fn(x) ∈ N}

is called the invariant part of N .
A compact set N ⊂ Rd is called an isolating neighborhood if

InvN ⊂ intN.

A set S ⊂ Rd is called an isolated invariant set if there exists an isolating
neighborhood N such that S = InvN .

A pair P = (P1, P2) of compact subsets of an isolating neighborhood N
is called an index pair if P2 ⊂ P1 and

(i) x ∈ Pi, f(x) ∈ N ⇒ f(x) ∈ Pi, i = 1, 2,
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(ii) x ∈ P1, f(x) 6∈ N ⇒ x ∈ P2,

(iii) InvN ⊂ int(P1\P2).

Let H∗ denote the Alexander-Spanier cohomology functor. Let iP be
the inclusion (P1, P2) → (P1 ∪ f(P2), P2 ∪ f(P2)). Since f maps (P1, P2)
to (P1 ∪ f(P2), P2 ∪ f(P2)) and iP is an excision for the Alexander-Spanier
cohomology, we can define the index map according to the formula

IP := H∗(fP ) ◦H∗(iP )−1 : H∗(P1, P2)→ H∗(P1, P2).

Define the generalized kernel of this map as

gker(IP ) :=
⋃
n∈N

ker InP .

The Conley index is then defined as

CH∗(S, f) := (H∗(P1, P2)/ gker(IP ), [IP ]) ,

where [IP ] stands for the automorphism induced by IP on the quotient space
H∗(P1, P2)/ gker(IP ).

Consider now the multivalued case. Let F : Rd ⇒ Rd be an upper semi-
continuous multivalued map and let N ⊂ Rd be a compact set. The invariant
part of N is the set

Inv(N,F ) :=
{
x ∈ N | ∃σ : Z→ N

such that σ(0) = x and σ(n+ 1) ∈ F (σ(n))
}
.

The set N is called an isolating neighborhood if

InvN ∪ F (InvN) ⊂ intN.

A pair P = (P1, P2) of compact sets is an index pair in an isolating
neighborhood N if P2 ⊂ P1 ⊂ N and

(i) F (Pi) ∩N ⊂ Pi, i = 1, 2,

(ii) F (P1\P2) ⊂ N ,

(iii) InvN ⊂ int(P1\P2).
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The index map in this case is defined according to the formula

IP := H∗(FP ) ◦H∗(iP )−1 : H∗(P1, P2)→ H∗(P1, P2)

and the Conley index is defined as

CH∗(S, f) := (H∗(P1, P2)/ gker(IP ), [IP ]) .

Assume A is a collection of multivalued maps. We recall that property
ϕ of maps in A is inheritable if for every F ∈ A and every selector f of F

ϕ(F ) ⇒ ϕ(f).

We say that ϕ is strongly inheritable if ϕ is inheritable and for any single-
valued map f ∈ A such that ϕ(f) and for any sequence {Fn} ⊂ A satisfying
Fn → f we have ϕ(Fn) for n sufficiently large. Finally, if α(F ) is a term then
we say that α is inheritable (strongly inheritable) if for any x the property
α(F ) = x is inheritable (strongly inheritable).

Theorem 3.1 (see [9]) Isolating neighborhood, index pair and Conley index
are strongly inheritable terms.

4 Existence of periodic orbits

Let f : Rd → Rd be a vector field on Rd of class C1. Let ϕ : Rd × R → Rd

be the flow on Rd generated by the differential equation

x′ = f(x).(1)

A compact subset Ξ of a (d − 1)–dimensional hyperplane Π is called a
local section for ϕ if the vector field f is transverse to Π on Ξ. Such a set Ξ
is called a Poincaré section for ϕ in an isolating neighbourhood N if Ξ ∩N
is closed and for every x ∈ N there exists t > 0 such that ϕ(x, t) ∈ Ξ.

Given a t ∈ R, define the time-t map by

ϕt : Rd 3 x 7→ ϕ(x, t) ∈ Rd.

Fix t > 0 and η > 0. Let N be a compact set representable with respect
to the grid Gη. Let F be a representation of ϕt on N . Assume

F (N) ⊂ intN.(2)
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In practice, we construct F and find an appropriate set N with the use
of a method for rigorous integration of differential equations for some t > 0.
We can expect that such a construction may be carried out in the case in
which numerical simulations indicate the existence of an attracting periodic
orbit. However, we must make sure that the chosen grid size η is small
enough and the precision of the rigorous integration is high enough.

As a consequence of (2), the set N is an isolating neighborhood for F
and the pair P = (N, ∅) is an index pair for F in N .

Let S1 denote the circle. Assume

H∗(N) = H∗(S1) and IP is an isomorphism.(3)

Then the Conley index of P is the index of an attracting periodic orbit.
Due to the inheritability property, so is the Conely index of any selector of
F , in particular of ϕt. Moreover, as a consequence of properties proved in
[8], the Conley index of N with respect to the flow ϕ is also the index of an
attracting periodic orbit. If so, it only remains to verify that

N admits a Poincaré section,(4)

to have checked all the assumptions of the following theorem, proved in a
more general setting in [4]:

Theorem 4.1 Assume N is an isolating neighborhood for the flow ϕ which
admits a Poincaré section Ξ. If N has the cohomological Conley index of a
hyperbolic periodic orbit then Inv(N,ϕ) contains a periodic orbit.

To sum up, our method is based on the following result:

Corollary 4.2 Assume that for the flow generated by the differential equa-
tion (1) there exist t, η, F and N as described above, for which (2), (3) and
(4) are satisfied. Then the differential equation (1) has a periodic solution.

In practice, the verification of the assumptions of Corollary 4.2 involves
a series of extensive, time-consuming computations. The algorithms which
may be used for these computations are proposed in [12].

As a byproduct we obtain rigorous information concerning the location
of the periodic orbit: it is contained in the interior of the isolating neighbor-
hood N constructed in course of the computer assisted proof. Unfortunately,
we do not prove anything about the period of this orbit. In particular, it is
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not ruled out that this orbit may make several turns along the neighborhood
until it gets closed.

As an example consider the Rössler equations
ẋ = −(y + z),
ẏ = x+ by,
ż = b+ z(x− a).

(5)

For a = 5.7 and b = 0.2 the existence of chaos in (5) was proved in
[16]. The chaotic attractor observed there seems to emerge via a series of
period-doubling bifurcations of stable periodic orbits as the parameter a is
increased. The first orbit in this series was observed in numerical simulations
for a = 2.2 in [3], but the existence of a periodic orbit close to the observed
one was proved only recently [13] with the use of the method described in
this section. This method also allows to prove the existence of the second
orbit, numerically best seen for a = 3.1 [14]. Summarizing, we can prove
the following theorem.

Theorem 4.3 Let b = 0.2. For a = 2.2 as well as for a = 3.1 the Rössler
equations (5) admit a periodic orbit.

Figure 1: The isolating neighborhood constructed for the Rössler equations
for the parameter value a = 2.2.

In Figure 1, projections to the XY and XZ planes of the neighborhood
constructed for the Rössler equations (5) for the parameter value a = 2.2
are illustrated. The grid size used was η = 1/32. The time-step used
t = 3 was approximately a half of the period of the periodic trajectory. The
thin lines in the picture indicate integer coordinates. Note that a much
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tighter neighborhood may be obtained if a finer grid is taken, but then the
computations are more costly in terms of computer time and memory used.

Figure 2: The neighborhood constructed for the Rössler equations with
a = 3.1.

Figure 2 shows projections to the XY and XZ planes of the neighbor-
hood computed for the periodic trajectory which numerically is observed
to appear after the first period-doubling bifurcation in the Rössler equa-
tions. This neighborhood was created with the grid size η = 1/256 and the
time-step t = 2.

All the rigorous computations needed to complete the proof of the exis-
tence of the periodic orbit took about 2 hours (a = 2.2) and 3 days (a = 3.1)
on an IBM compatible PC running a 450 MHz processor.

As our second example consider the Lorenz equations
ẋ = σ(y − x),
ẏ = Rx− y − xz,
ż = xy − bz.

(6)

For R = 28, σ = 10 and b = 8/3 the existence of chaos in these equa-
tions was proved in [2, 7]. However, when the parameter R is increased to
R = 260 or to R = 350, attracting periodic orbits are observed in numer-
ical simulations [15]: a symmetric one in the latter case and two mutually
symmetric in the former case. These symmetries are due to the symmetry
in the equations:

s : (x, y, z) 7→ (−x,−y, z).
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Our method allows to prove that there exist periodic orbits close to the
location of the numerically observed ones. The details are presented in [14].

Theorem 4.4 Fix σ = 10 and b = 8/3. For R = 260 the Lorenz equations
(6) admit two mutually symmetric periodic orbits, and for R = 350 the
Lorenz equations (6) admit a periodic orbit.

Figure 3: The isolating neighborhood constructed for the Lorenz equations
for the parameter value R = 260.

In Figure 3, projections to the XY and XZ planes of a neighborhood
of one of the two mutually symmetric periodic trajectories for R = 260 are
plotted. The grid marked in the picture is drawn every 10 units. The Z
coordinate of the bottom of the right-hand picture is 180. The grid size
used in rigorous computations was η = 1/16. The time step was taken to
be t = 1/16 which is about 1/7 of the approximate period of the trajectory
observed in numerical simulations.

In Figure 4, projections to the XY and XZ planes of the neighborhood
found for R = 350 are visualized. Again, the grid marked in the picture is
drawn every 10 units. The Z coordinate of the bottom of the right-hand
picture is 280. The grid size used in rigorous computations was η = 1/8.
The time step was chosen as t = 1/16, which is about 1/6 of the approximate
period of the observed trajectory.
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Figure 4: The neighborhood constructed for the Lorenz equations with R =
350.

The time of numerical computations on a IBM compatible PC running a
450 MHz processor amounted to about 4 days for the first orbit and 5 days
for the other.
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[2] Z. Galias, P. Zgliczyński, Computer assisted proof of chaos in the Lorenz
system, Physica D, 115(1998), 165-188.
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