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Dynamics of homeomorphisms of surfaces
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The dynamics of a self-map f : X → X is described by invariants as the
sequence of numbers of periodic points {|P n(f)|}, P n(f) = Fix(fn), the set
of minimal periods Per(f) ∈ N, or the topological entropy h(f) ∈ R+ ∪{0}.
In the case when X = Sg is a an oriented surface of genus g, g ≥ 2, and f is
a homeomorphism we can use many topological tools due to the Nielsen-
Thurston classification theorem. It states that up to a homotopy, thus
isotopy, every homeomorphism f of Sg is represented by: either a peri-
odic homeomorphism, or a pseudo-Anosov homeomorphism, or a reducible
homeomorphism. In the last case each piece of the reduction can be peri-
odic, or pseudo-Anosov. It is important, but difficult, to distinguish when f
is the pseudo-Anosov or its reduction contains at least one pseudo-Anosov
piece, because then Per(f) is infinite, e.g. there is infinitely many periodic
points, and h(f) = log(λf ) where λf is the largest stretching (expanding)
factor of the pseudo-Anosov piece. From the Nielsen theory we know that
λf = N∞(f) := lim sup n

√
N(fn), but an affective computation of the lat-

ter is also strenuous. In last two decades, to resolve this difficulty there
was developed a theory which let us to express λf as the as the spectral
radius of H1(f̃), where H1(f̃) ∈ Sp(2g,Z) is the linear map induced on
H1(S̃g̃;Z) = Z2g̃ by a homeomorphism f̃ : S̃g̃ → S̃g̃ being a lift of f to a
finite regular cover p : S̃g̃ → Sg. On the other hand, the results of 70ties
of 20th century showed that the dynamics of a pseudo-Anosov homeomor-
phism of surface, e.g. its entropy, can be represented as the dynamics of
quotient of finite sub-shift (a Markov partition). In this talk we pose a
question whether a combination of two mentioned approaches could lead to
an effective, computer assisted, method of distinguish whether there is a
pseudo-Anosov piece in the canonical form of f and which let us to derive
λf .
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