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Abstract

Local bifurcation theory is used to prove the existence of chaotic dynamics in two
well-known models of tritrophic food chains. To the best of our knowledge, the
simplest technique to guarantee the emergence of strange attractors in a given
family of vector fields consists of finding a 3-dimensional nilpotent singularity
of codimension 3 and verifying some generic algebraic conditions. We provide
the essential background regarding this method and describe the main steps
to illustrate numerically the chaotic dynamics emerging near these nilpotent
singularities. This is a general-purpose method and we hope it can be applied
to a huge range of models.
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1. Introduction

Mechanisms underlying the genesis of oscillations in predator-prey populations
were successfully explained in the celebrated papers [1] and [2]. Since then, the
study of ditrophic food chains became one of the major topics in Theoretical
Ecology. Working with tritrophic food chains, Hastings and Powel [3] showed
that they could exhibit chaotic behavior (see also the earlier reference [4]).
Subsequent studies [5, 6, 7, 8, 9, 10, 11] or, more recently, [12, 13, 14, 15]), were
devoted to describe the dynamics of these models, particularly the mechanisms
that lead to the emergence of chaos.

In this paper we use a tool, already introduced in [16, 17, 18] and based
on local bifurcation theory, to prove the existence of chaotic behavior. Namely,
we will explain how some singularities can play a role of organizing centers for
chaotic dynamics. The method is applied to two very well-known models of the
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tritrophic food chain and illustrated with numerical explorations. The steps to
apply this technique to other models are also described.

A general tritrophic food chain system is defined by x′ = f1(x)− g1(x)y,
y′ = f2(y) + g1(x)y − g2(y)z,
z′ = f3(z) + g2(y)z.

(1)

This system models the interaction between three different species, namely veg-
etation (x), herbivores (y) and predators (z). The functions fi, with i = 1, 2, 3,
represent the growth rates of vegetation, herbivores and predators, respectively,
when the other species are absent. The interaction between different species is
also modeled in the system by means of those terms that depend on the functions
gi with i = 1, 2. As mentioned in the ecological literature, the most common
interactions between consumers and resources are the functional responses of
Lotka-Volterra and Holling type II. Both types of consumer-resource interac-
tions can be modelled in a single system of differential equations by defining the
functions gi(u) = αiu/(1 + kiu), with αi > 0 and ki ≥ 0, for i = 1, 2. Namely,
conditions ki = 0 and ki > 0 correspond to Lotka-Volterra and Holling type II
interactions, respectively.
We consider here two particular cases for the system in (1):

Model A

 x′ = a(x− x0)− α1xy,
y′ = −by + α1xy − α2yz,
z′ = −c(z − z0) + α2yz,

(2)

where a, b, c, x0 and z0 are positive parameters, and

Model B


x′ = rx(1− px)− α1x

1+k1y
y,

y′ = −by + α1x
1+k1y

y − α2yz,

z′ = −c(z − z0) + α2yz,

(3)

where r, p, b, c, x0 and z0 are positive parameters.
In Model A, it is assumed the possible existence of other consumers affecting

the growth of vegetation through the term x0 and also the existence of alterna-
tive sources of food available for predators through the term z0. In this case,
Lotka-Volterra conditions are considered for all interactions. This model was
studied and discussed in [19], providing numerical evidences of chaotic dynamics
when

a = 1, b = 1, c = 10, α1 = 0.1, α2 = 0.6, x0 = 1.5, z0 = 0.01.

Regarding the intra-specific dynamics, a natural assumption is to consider a
logistic law to model the growth of herbivores. This is the case in Model B. In
particular, when p = 0, Model B corresponds to the case studied in [20], where
authors provided numerical evidences of chaotic behavior when

r = 1, p = 0, b = 1, c = 10, α1 = 0.2, α2 = 1, k1 = 0.05, z0 = 0.006.
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According to [20, 19], systems (2) and (3) with p = 0 model, for example, a
classical food web of lynx, hare and vegetation. It should be noted that when
z0 = 0 and the Lotka-Volterra interaction between predators and herbivores is
replaced by a Holling type II interaction, equations in (3) correspond to the
Hastings-Powell model (see [3]).

Our main aim in this paper is to show the existence of chaotic dynamics in
models A and B by proving that the appropriate singularities are unfolded. In-
deed, we demonstrate that both models unfold generically 3-dimensional nilpo-
tent singularities. On the other hand, literature provides results establishing
that close to these singularities there exist strange attractors (see [16] and also
[17, 18]).

Singular perturbation theory has also been successfully applied to explain
the emergence of chaotic behavior in tritrophic food chains. For instance, in [9]
and [6], it is used to study the existence of chaos in the Rosenzweig–MacArthur
(see also [21, 22, 23]). Singular perturbation analysis is also applied to a food
chain with four species in [24, 25, 26].

There are numerous models in the literature in which the arguments for the
existence of chaotic behavior rest on numerical evidence. However, analytical
proofs are considerably less common. To understand the relationship between
singularities and homoclinic orbits, as well as their role in the context of Chaos
Theory, we must go back to the first demonstrations of the existence of chaotic
behavior.

Poincaré [27] was the first to notice the dynamical complexity implied by
the existence of a homoclinic orbit associated with a saddle type hyperbolic
fixed point of a difeomorphism. By a homoclinic orbit we mean the orbit of a
homoclinic point, that is, an intersection point between the invariant manifolds
of the saddle. Poincaré understood that, if such intersection is transverse, any
neighborhood of the primary homoclinic orbit contains an infinite number of
secondary ones. Later, Birkhoff [28] proved that in that situation, there also
exists an intricate set of periodic orbits with a wide variety of periods. This
complicated scenario cried out for a geometric structure that would explain the
dynamics as a whole. It was in 1965 that Smale [29] devised his famous horseshoe
and placed it in a neighborhood of a transverse homoclinic point. The Lorenz
attractor [30] was already known at that time and the notion of chaos was
being introduced in the field of dynamical systems. Later, the numerical results
of Hénon [31] would come as an example of what was called a strange attractor.

Without going into details, an attractor is called strange if it contains a dense
orbit with a positive Lyapunov exponent. This last condition is the hallmark
of a chaotic system and explains the divergence of orbits within the attractor
or, in other words, the high sensitivity of the system to initial conditions, which
makes it unpredictable. Despite the impressive numerical examples of Lorenz
and Hénon, it still took several years for the first analytical proof of the existence
of strange attractors to appear.

In 1991, another celebrated article [32] was published, a mathematical mas-
terpiece in which Benedicks and Carleson managed to demonstrate the existence

3



of strange attractors in the Hénon family(
x
y

)
→
(

1− ax2 + y
bx

)
, (4)

where a, b ∈ R. They considered (4) as a perturbation of a quadratic map re-
garding b as a small parameter. The existence of strange attractors holds for a
positive measure set of parameter values. At the same time, using the techniques
introduced in [32], Mora and Viana [33] proved that in any generic 1-parameter
unfolding of a homoclinic tangency for a 2-dimensional diffeomorphism, there
exists a positive measure set of parameters for which the diffeomorphism ex-
hibits (Hénon-like) strange attractors. Once again, the starting point was to
understand these families as unfoldings of a 1-dimensional quadratic map. The
results in [33] are essential in our discussion (see also [34]).

The next step was to place homoclinic tangency bifurcations for 2-dimensional
difeomorphisms in the context of families of 3-dimensional vector fields. Given
a 3-dimensional vector field with a saddle type hyperbolic equilibrium point p,
any orbit γ with limit p when t → ±∞ is said homoclinic. We say that the
homoclinic orbit is of Shilnikov type if p is a saddle-focus with eigenvalues λ
and −ρ ± ωi satisfying 0 < ρ < λ . The dynamics in a neighborhood of these
homoclinic orbits was first studied by Shilnikov [35]. He proved the existence
of infinitely many periodic orbits of saddle type in each neighborhood of the
homoclinic orbit. This property should remind us Birkhoff’s result for trans-
verse homoclinic points in 2-dimensional diffeomorphisms. In fact, it can be
proved (see [36, 37]) that the first return map around the homoclinic orbit ex-
hibits an infinity of Smale horseshoes. Extended by the flow of the vector field,
these horseshoes generate invariant 3-dimensional sets (suspended horseshoes)
that accumulate in the homoclinic orbit. Each horseshoe contains an infinite
number of transverse homoclinic orbits, where Poincaré’s intuition works again.
When the vector field is unfolded to produce a homoclinic bifurcation, these
horseshoes are destroyed. The process of creating and destroying horseshoes
is accompanied by unfoldings of homoclinic tangencies to hyperbolic periodic
points [38, 39] and, therefore, the existence of strange attractors follows from
[33] (see also [40, 41, 42]) .

Consequently, there are global configurations, the Shilnikov-type homoclinic
orbits, which unfold strange attractors. Since the theory predicts their existence
for a positive measure set of parameter values, these strange attractors are
observable. Unfortunately, for a given family, Shilnikov homoclinic orbits are not
easy to detect, even though there are several results in the literature regarding
the emergence of chaos that are based on the numerical location of Shilnikov
homoclinic orbits.

Fortunately, it has been proved in [16] that Shilnikov homoclinic orbits,
and hence Hénon-like strange attractors, arise in any generic unfolding of a 3-
dimensional nilpotent singularity of codimension 3 (see also [17, 43], and [18] for
additional technical details). The key argument is the fact that, rescaling vari-
ables and parameters, any of such unfoldings can be written as a perturbation
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of a vector field that exhibits a heteroclinic cycle formed by two saddle-focus
equilibria with different stability indexes. Two branches of the 1-dimensional
invariant manifolds are coincident and the two-dimensional invariant manifolds
intersect transversely. This cycle is a codimension two configuration whose un-
folding shows, generically, Shilnikov-type homoclinic bifurcation curves. There-
fore, under generic assumptions to be set in Section 2, the existence of nilpotent
singularities implies the emergence of chaotic behavior in a given family. In this
paper, we show that this method (not related to singular perturbations) can be
applied to detect chaos in tritrophic food chains.

Singularities are much more manageable objects than Shilnikov homoclinic
orbits. It is a remarkable fact that the steps involved in finding a given sin-
gularity and verifying a few generic algebraic conditions become the simplest
technique for proving the existence of chaotic dynamics. Applications can be
found, for example, in [44, 45, 46, 47, 48, 49].

It must be mentioned, however, that the method, although results in proving
the existence of Shilnikov homoclinic orbits and thus strange attractors, does not
provide us with the (precise) location of neither the strange attractors nor the
Shilnikov homoclinic bifurcations in the parameter space. In order to illustrate
the chaotic behavior numerically, an alternative method must be used. One
possibility is to search for homoclinic bifurcation points by continuation of the
periodic orbit emerging from a Hopf bifurcation point. If the periodic orbit
disappears in a homoclinic bifurcation, we will see that the period of the orbit
tends to infinity. If the homoclinic orbit is of Shilnikov type, we will also see
period doubling cascades that precede the formation of the horseshoes, as argued
in [39, 50]. As we have already explained, the process of creating or destroying
horseshoes is accompanied by the appearance of strange attractors. Ultimately,
tracking the attracting periodic orbit in the doubling cascade allows for strange
attractors to be located.

Remark 1.1. It must be remarked that three is not the lowest codimension
from which it is possible to unfold chaotic behaviors. It is known that there exist
Hopf-Zero singularities of codimension two which generically unfold Shilnikov
homoclinic orbits. However, part of the genericity conditions depend on the full
jet of the singularity and numerical techniques are required for their computa-
tion. See [51, 52] and references therein.

In Section 2, we provide the essential technical background regarding 3-
dimensional nilpotent singularities and the generic conditions which are required
to guarantee the emergence of strange attractors. Existence and genericity of
3-dimensional nilpotent singularities in models A and B is discussed in Section
3. Moreover, numerical illustrations of dynamics close to nilpotent singularities
are given in Section 4. Finally, we discuss in Section 5 the potential applications
of our tool, based on local bifurcation theory, to prove the existence of chaotic
dynamics.
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2. Nilpotent singularities

Let X be a C∞ vector field in R3 with X(0) = 0 and DX(0) linearly conju-
gated to

N =

 0 1 0
0 0 1
0 0 0

 . (5)

In appropriate C∞ coordinates (see [53]), the equations of X can be written as x′1 = x2,
x′2 = x3,
x′3 = f(x1, x2, x3),

(6)

with f(x1, x2, x3) = O(‖(x1, x2, x3)‖2). It is said that X has a nilpotent singu-
larity of codimension 3 at 0 if the generic condition

d11 =
∂2f

∂x21
(0) 6= 0 (7)

is fulfilled.
According to [53], we can state the result below:

Lemma 2.1. Let Xλ be a C∞ family of 3-dimensional vector fields with λ =
(λ1, λ2, λ3) ∈ R3 such that X0 has a nilpotent singularity of codimension 3 at 0.
Under generic assumptions about the derivatives of the family with respect to pa-
rameters, and also after changing to new suitable coordinates x̄ and parameters
λ̄, the family Xλ can be written as x̄′1 = x̄2,

x̄′2 = x̄3,
x̄′3 = λ̄1 + λ̄2x̄2 + λ̄3x̄3 + x̄21 + h(x̄, λ̄),

(8)

with x̄ = (x̄1, x̄2, x̄3) ∈ R3, λ̄ = (λ̄1, λ̄2, λ̄3) ∈ R3, h(x̄, λ̄) = O(‖(x̄, λ̄)‖2) and
h(x̄, λ̄) = O(‖(x̄2, x̄3)‖).

Genericity in Lemma 2.1 includes the condition in (7), regarding the singu-
larity itself, and a transversality condition involving derivatives of the family
with respect to parameters. To be precise, assuming that only the condition in
(7) is fulfilled, it was proved (see details in [53] or [46]) that, using appropriate
C∞ coordinates, the family Xλ can be written as x̄′1 = x̄2,

x̄′2 = x̄3,
x̄′3 = m1(λ) +m2(λ)x̄2 +m3(λ)x̄3 + x̄21 + g(x̄, λ),

(9)

with g(x̄, λ) = O(‖(x̄, λ)‖2) and g(x̄, λ) = O(‖(x̄2, x̄3)‖). The unfolding in (9)
is said to be generic if m(λ) = (m1(λ),m2(λ),m3(λ)) is a local diffeomorphism
at the origin or, in other words, if the generic condition below

∆ = det(Dm(0)) 6= 0 (10)
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is satisfied. With this assumption we can introduce new parameters

(λ̄1, λ̄2, λ̄3) = (m1(λ),m2(λ),m3(λ))

to obtain (8).
For the sake of completeness, we provide simple formulas to check the generic

assumptions. Let us write Xλ(x) = (X(1)(x, λ), X(2)(x, λ), X(3)(x, λ)) and as-
sume that DX0(0) = N . We consider the notation

γ
(k)
i =

∂X(k)

∂λi
(0, 0), Λ

(k)
ij =

∂2X(k)

∂λi∂xj
(0, 0),

A
(k)
ii =

1

2

∂2X(k)

∂x2i
(0, 0), A

(k)
ij =

∂2X(k)

∂xi∂xj
(0, 0) (when i 6= j),

for i, j, k = 1, 2, 3. It follows from [53] that

d11 = 2A
(3)
11 . (11)

The coefficient A
(3)
11 remains unchanged after reducing the system to the normal

form. Therefore, we assume that, up to a change of coordinates, A
(3)
11 = 1.

Using the formulas provided in [46], we easily obtain

∆ =

∣∣∣∣∣∣∣
γ
(3)
1 γ

(3)
2 γ

(3)
3

P ∗1 +
∑2
k=1 Pkγ

(k)
1 P ∗2 +

∑2
k=1 Pkγ

(k)
2 P ∗3 +

∑2
k=1 Pkγ

(k)
3

Q∗1 +
∑2
k=1Qkγ

(k)
1 Q∗2 +

∑2
k=1Qkγ

(k)
2 Q∗3 +

∑2
k=1Qkγ

(k)
3

∣∣∣∣∣∣∣ (12)

for all i = 1, 2, 3, with

P ∗i = Λ
(3)
i2 + Λ

(2)
i1 −

1

2

(
A

(3)
12 + 2A

(2)
11

)
Λ
(3)
i1 ,

P1 = −
(

2A
(3)
22 +A

(2)
12 −

1

2
A

(3)
12

(
A

(3)
12 + 2A

(2)
11

))
,

P2 = −
(
A

(3)
23 +A

(2)
13 −

1

2
A

(3)
13

(
A

(3)
12 + 2A

(2)
11

))
,

Q∗i = Λ
(3)
i3 + Λ

(2)
i2 + Λ

(1)
i1 −

1

2

(
A

(3)
13 +A

(2)
12 + 2A

(1)
11

)
Λ
(3)
i1 ,

Q1 = −
(
A

(3)
23 + 2A

(2)
22 +A

(1)
12 −

1

2
A

(3)
12

(
A

(3)
13 +A

(2)
12 + 2A

(1)
11

))
,

Q2 = −
(

2A
(3)
33 +A

(2)
23 +A

(1)
13 −

1

2
A

(3)
13

(
A

(3)
13 +A

(2)
12 + 2A

(1)
11

))
.

Remark 2.2. The additional condition

d12 =
∂2g

∂x1∂x2
(0) 6= 0 (13)

is also required to prove the existence of strange attractors (see [18]). It follows
from [46] that

d12 = A
(3)
12 + 2A

(2)
11 . (14)
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Several aspects of the dynamics arising in unfoldings of the 3-dimensional
nilpotent singularity of codimension 3 has been studied in ([53, 17, 43, 16, 18]).
In [16, 18], it was proved that any unfolding satisfying the generic conditions
(7), (10) and (13) displays Shilnikov homoclinic orbits and hence, as argued in
the introduction, strange attractors.

Remark 2.3. As the simple formulas provided in (11), (12) and (14) are effort-
less computable, in this paper we describe an easy-to-check method to prove the
existence of chaotic behavior in a given model. This will become a very helpful
technique for further applications in the detection of chaos.

3. Chaos in tritrophic food chain models

In this section we prove that models in (2) and (3) are indeed generic un-
foldings of 3-dimensional nilpotent singularities and, hence, they exhibit strange
attractors. Note that, in both cases, some coefficients can be normalized. There-
fore, in what follows, we assume that a = 1 and r = 1 in (2) and (3), respectively.

3.1. Nilpotent singularities in Model A

The study of equilibria of model in (2) provides the below result regarding
the existence of a nilpotent singularity.

Proposition 3.1. Assume that α2 6= α1, α2 6= α1c and c 6= 1 in (2). When

(x0, z0, b) = (x̂0, ẑ0, b̂) with

x̂0 =
(α2 − α1c)

3

2α2
1(α2 − α1)2(c− 1)

, ẑ0 =
(α2 − α1c)

3

2α2
2(α2 − α1)2c(c− 1)

,

and

b̂ =
(α2 − α1c)

2

2α1α2(c− 1)
,

system (2) has an equilibrium point at (x̂, ŷ, ẑ) with

x̂ =
(α2 − α1c)

2

2α2
1(α2 − α1)(c− 1)

, ŷ =
c− 1

α2 − α1
, ẑ =

(α2 − α1c)
2

2α2
2(α2 − α1)(c− 1)

,

where the Jacobian matrix is linearly conjugated to N as given in (5).

Proof. From the first and third equation in (2) it follows that an equilibrium
(x̂, ŷ, ẑ) must satisfy that

x̂ =
x0

1− α1ŷ
and ẑ =

cz0
c− α2ŷ

. (15)

Replacing x and z by x̂ and ẑ, respectively, in the second equation of system
(2), we obtain that either

b = α1x̂− α2ẑ (16)
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or y = 0. It is here assumed that (16) is fulfilled because otherwise we obtain a
singularity at (x0, 0, z0) and it can be checked that is not nilpotent.

To characterize the nilpotent singularities we need to compute the linear
part of (2) at (x̂, ŷ, ẑ). The Jacobian matrix is given by 1− α1ŷ −α1x̂ 0

α1ŷ 0 −α2ŷ
0 α2ẑ −c+ α2ŷ


and the characteristic polynomial is

c0 + c1λ+ c2λ
2 − λ3,

with
c0 = ŷ(α2

1(−c+ α2ŷ)x̂+ α2
2(1− α1ŷ)ẑ),

c1 = −((1− α1ŷ)(−c+ α2ŷ) + α2
1x̂ŷ + α2

2ŷẑ),
c2 = 1− c+ ŷ(α2 − α1).

The equilibrium at (x̂, ŷ, ẑ) is a nilpotent singularity if c0 = c1 = c2 = 0.
Assuming that c2 = 0, we easily obtain

ŷ =
c− 1

α2 − α1
.

Therefore, substituting ŷ in (15), we get

x̂ =
x0(α2 − α1)

α2 − α1c
ẑ =

cz0(α2 − α1)

α2 − α1c
. (17)

Substituting x̂, ŷ y ẑ in the equations c0 = 0 and c1 = 0, and assuming that
c 6= 1, we obtain the system below:{

α2
1x0 + α2

2cz0 = (α2−α1c)
3

(c−1)(α2−α1)2

α2
1x0 − α2

2cz0 = 0,
(18)

which is linear in the unknown parameters x0 and z0. The solutions of this
systems are

x0 =
(α2 − α1c)

3

2α2
1(α2 − α1)2(c− 1)

z0 =
(α2 − α1c)

3

2α2
2(α2 − α1)2(c− 1)c

.

Hence, substituting x0 and z0 in (17)

x̂ =
(α2 − α1c)

2

2α2
1(α2 − α1)(c− 1)

ẑ =
(α2 − α1c)

2

2α2
2(α2 − α1)(c− 1)

and then substituting x̂ and ẑ in (16) we get

b̂ =
(α2 − α1c)

2

2α1α2(c− 1)
.

It easily follows that the rank of the Jacobian matrix is equal to 2 and hence it
is linearly conjugated to N .
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To check all the generic conditions given in Section 2, we consider x0, z0 and
b as bifurcation parameters and fix all the others at the values provided by a
bifurcation point to a nilpotent singularity. After an appropriate C∞ change of
coordinates, the equations of Model A can be written with a canonical linear
part as in system (2.1). Therefore, from formulas (11) and (14), it follows that

d11 =
2α2 (c α1 − α2) (c− 1)

α1 − α2
(19)

and

d12 =
α1 (c− 3) + α2 (3 c− 1)

(c α1 − α2) (c− 1)
. (20)

Moreover, using (12), we get

∆ =
c α2

1 α
2
2 (c α1 − α2) (c− 1)

3

(α1 − α2)
3 . (21)

It easily follows that the values x̂0, ẑ0 and b̂ and also x̂, ŷ and ẑ (as given
in Proposition 3.1) are all positive if and only if c > 1 and α2 > α1c. Such
conditions also imply that d11 6= 0 and ∆ 6= 0. Moreover, d12 6= 0 under the
additional condition

α1 (c− 3) + α2 (3 c− 1) 6= 0. (22)

Thus, as the conditions given in (7), (10) and (13) fulfill, Model A unfolds
generically 3-dimensional nilpotent singularities and exhibits strange attractors.

Remark 3.2. Formulas given in (19), (20) and (21) are not unique but depend
on the C∞ change of coordinates. Nevertheless, after any change of variables,
it can be easily check that d11 6= 0 and ∆ 6= 0 when c > 1 and α2 > α1c, as well
as d12 6= 0 under the additional condition (22).

3.2. Nilpotent singularities in Model B

The study of equilibria of model in (3) provides the below result regarding
the existence of a nilpotent singularity.

Proposition 3.3. Let

Φ1 = p+ k1(2ps− 1),

Φ2 = 2(ps− 1)2(1 + k1s)
2α2 − s2Φ3

1.
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When (z0, b, c, α1) = (ẑ0, b̂, ĉ, α̂1) with

ẑ0 =
−s5Φ7

1

4(1 + k1s)3(ps− 1)2α2
2Φ2

,

b̂ =
−s2Φ2

1

(
2(ps− 1)(1 + k1s)

2α2 + sΦ2
1

)
4(1 + k1s)3(ps− 1)2α2

,

ĉ =
Φ2

s(1 + k1s)Φ2
1

,

α̂1 =
−sΦ2

1

2(ps− 1)
,

system (3) has an equilibrium point at (x̂, ŷ, ẑ) with

x̂ = s, ŷ =
2(1 + k1s)(ps− 1)2

s(p+ k1(2ps− 1))2
, ẑ =

s3(p+ k1(2ps− 1))4

4(1 + k1s)3(ps− 1)2α2
2

.

Whenever x̂, ŷ, ẑ > 0, the Jacobian matrix at the equilibrium point is conjugated
to N as given in (5).

Proof. From the first and third equation in (3), it follows that an equilibrium
(x̂, ŷ, ẑ) satisfies that

ŷ = − (1 + k1x̂)(px̂− 1)

α1
and ẑ =

cz0
c− α2ŷ

.

Replacing z by ẑ in the second equation of system (3), we also obtain that
either

ŷ =
c ((b+ z0α2)(1 + k1x̂)− α1x̂)

(b(1 + k1x̂)− α1x̂)α2
(23)

or ŷ = 0. It is here assumed that (23) is fulfilled because it can be checked that
otherwise the singularities are not nilpotent. Therefore, it is also assumed that
x̂ 6= 1

k1
and x̂ 6= 1

p .
Hence, we get that

− (1 + k1x̂)(px̂− 1)

α1
=
c ((b+ z0α2)(1 + k1x̂)− α1x̂)

(b(1 + k1x̂)− α1x̂)α2
.

Solving the above equation to find c, we obtain

ĉ ≡ ĉ(x̂, p, k1, α1, α2, z0) = − (1 + k1x̂)(px̂− 1)(b(1 + k1x̂)− α1x̂)α2

α1 ((b+ z0α2)(1 + k1x̂)− α1x̂)
.

The characteristic polynomial of the Jacobian matrix at (x̂, ŷ, ẑ) is

c0 + c1λ+ c2λ
2 − λ3,

11



where c0, c1 and c2 are functions of (x̂, p, b, z0, α1, α2, k1).
The equilibrium at (x̂, ŷ, ẑ) is a nilpotent singularity if c0 = c1 = c2 = 0.

Assuming that c2 = 0, we easily obtain b̂ ≡ b̂(x̂, p, k1, α1, α2, z0). Substituting b

by b̂ in c0 = 0, we obtain

ẑ0 ≡ ẑ0(x̂, p, k1, α1, α2) =
α3
1x̂

2(p+ k1(−1 + 2px̂))

α2
2(1 + k1x̂)3g(x̂, p, k1, α1, α2)

.

with g(x̂, p, k1, α1, α2) = k21x̂
2(px̂−1)α2 +px̂(α1 +α2)−α2 +k1x̂[(2px̂−1)α1 +

2(px̂− 1)α2]. Substituting b by b̂ and z0 by ẑ0 in c1 = 0, we get

α̂1 ≡ α̂1(x̂, p, k1) =
−x̂(p+ k1(2px̂− 1))2

2(px̂− 1)
.

Substituting α1 by α̂1 in ẑ0, the formula of ẑ0 can be written as a function
of (x̂, p, k1, α2). Similarly, substituting α1 by α̂1 and z0 by ẑ0 in b̂, we obtain a

formula for b̂ that depends only on (x̂, p, k1, α2). In addition, we can also write
ĉ as a function of (x̂, p, k1, α2). Finally, we replace x̂ by an extra parameter s
to get all the formulas provided in the statement.

It easily follows that, when x̂, ŷ, ẑ > 0, the rank of the Jacobian matrix is
equal to 2 and hence it is linearly conjugated to N .

To prove that Model B is a generic unfolding of the 3-dimensional nilpo-
tent singularity characterized in Proposition 3.3, the generic conditions given in
Section 2 have to be checked as well. In this case, we consider z0, b and c as
bifurcation parameters and fix the others at the values provided by a bifurca-
tion point to a nilpotent singularity. Therefore, from formulas (11) and (14), it
follows that

d11 =
2α2(ps− 1)(k31s

2Ψ1 + k21s
2Ψ2 + 2k1sΨ3 − 2α2(ps− 1))

(1 + k1s)2(p+ k1(2ps− 1))
, (24)

d12 =
2α2(Ψ4 + p2Ψ5 + k21sΨ6 + 2k1sΨ7)

s(1 + k1s)(p+ k1(2ps− 1))2d11
. (25)

Using (12), it follows

∆ =
s α2

2(ps− 1)
2

Ψ8

(
Ψ9 + k1

2s2 Ψ10 + k1sΨ11

)
(1 + k1s)

3
(p+ k1 (2ps− 1))

2 . (26)

12



In the above expressions,

Ψ1 = 1− 5ps+ 6p2s2,

Ψ2 = 7p2s+ 2α2 − p(3 + 2sα2),

Ψ3 = p2s+ 2α2 − 2psα2,

Ψ4 = p3s2 + 2k31ps
3(2ps− 1)− 6α2 + 12psα2,

Ψ5 = s− 6s2α2,

Ψ6 = 1− 6sα2 − 6p2s2(sα2 − 2) + ps(12sα2 − 7),

Ψ7 = p3s2 − 6α2 + 3p2s(1− 2sα2) + p(12sα2 − 1),

Ψ8 = −p+ k1 − 6 p s k1 + 4 p2 s2 k1,

Ψ9 = p3 s2 + s2 (2 p s− 1)
3
k1

3 − 2α2 + 4 p sα2 − 2 p2 s2 α2

Ψ10 = 12 p3 s2 − 2α2 − 2 p2 s (6 + s α2) + p (3 + 4 s α2) ,

Ψ11 = 6 p3 s2 − 4α2 + 8 p sα2 − p2 s (3 + 4 s α2) .

In this case, it is not easy to state simple conditions to guarantee that (24), (25)
and (26) do not vanish and also that coordinates and parameters are all of them
positive at the bifurcation point. In the next section, we find positive parameter
values s, p, α2 and k1 for which ẑ0, b̂, ĉ and α̂1 and also x̂, ŷ and ẑ (as given in
Proposition 3.3) are all positive. Moreover, we check that generic conditions (7),
(10) and (13) are fulfilled. Therefore, it follows that Model B unfolds generically
3-dimensional nilpotent singularities and, hence, exhibits strange attractors.

Remark 3.4. Computations are straightforward through formulas (11), (12)
and (14). Nevertheless, most of them are lengthy and we have used the Symbolic
Math Toolbox in Matlab R© to carry out many of them.

4. Numerical simulations

In this section, we study numerically the bifurcation diagram of both mod-
els A in (2) and B in (3). For the purpose of simulations, the equations are
solved numerically in Matlab R©, using the MatCont package [54] for numerical
bifurcation analysis. We also show the emergence of chaotic dynamics near the
nilpotent singularity generically unfolded in these models. In section 2, the
well-known techniques to ensure that a given family of differential equations
exhibits chaotic dynamics were reduced to a small number of algebraic calcu-
lations. Thus, the necessary conditions become easy to check for any family.
Nevertheless, although the theoretical results guarantee that generic unfoldings
of 3-dimensional nilpotent singularities include strange attractors, this technique
is not a tool in itself to find numerically strange attractors and extra work has
to be done to locate a region in the parameter space where chaotic behavior
emerges. As we believe that formulae in section 2 will be useful to study the
emergence of chaotic dynamics in many other models, we describe here the main
steps to show numerically the chaotic dynamics near the nilpotent singularity
in our models.
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4.1. Model A

We work with parameters values close to those considered in [19] and, there-
fore, in what follows in this section we set

c = 3, α1 =
3

25
, and α2 =

4

5
.

Using formulae provided in Proposition 3.1, we get

x̂0 =
33275

10404
, ẑ0 =

1331

55488
, b̂ =

121

240
,

and hence the equilibrium point is at

x̂ =
3025

612
, ŷ =

50

17
, ẑ =

121

1088
.

Substituting these parameter values in formulae (19), (20) and (21), we easily
obtain

d11 =
176

85
, d12 =

−80

11
, and ∆ =

38016

122825
.

Therefore, Model A is a generic 3-parametric unfolding of a 3-dimensional
nilpotent singularity. The parameters of the unfolding are x0, z0 and b and a
nilpotent singularity appears at (x̂, ŷ, ẑ) when x0 = x̂0, z0 = ẑ0 and b = b̂.

To study the bifurcation diagram near the nilpotent singularity, we consider
(µ1, µ2, µ3) as new parameters and work with the family below

x′ = x− x̂0 − µ1 − α1xy,

y′ = −(b̂+ µ2)y + α1xy − α2yz,
z′ = −c(z − ẑ0 − µ3) + α2yz.

(27)

The theoretical results in section 3 guarantee that family (27) includes
strange attractors. To illustrate this result we set µ3 = 0.01 and study the
bifurcation diagram of (27) in the (µ1, µ2)-parameter plane. A Hopf bifurcation
curve and a saddle-node bifurcation curve are detected near the 3-dimensional
nilpotent singularity (see Figure 1(a)). Moreover, by continuation in the param-
eter µ2 (see Figure 1(b)) of the periodic orbit emerging from the Hopf bifurcation
detected when µ1 = 0.6182493995438856, a period doubling bifurcation is de-
tected (see the blue curve in Figure 1(c)). An additional period doubling is
shown in Figure 1(c). In Figure 1(d) we provide a bifurcation diagram of period
doubling cascades.

The existence of period doubling cascades is itself an evidence of chaos,
but because we have put the emphasis in the existence of Shilnikov homoclinic
orbits, we show an example in Figure 2. We plot, as approximations of the
homoclinic connection, the orbit which is computed at the end point of the
numerical continuation of the 1-periodic orbit (see the blue curve in Figure
1(c)). Note that there exists an infinite sequence of saddle-node bifurcations
and the period of the orbit tends to infinity. As period increases, parameter µ2

14
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Figure 1: Model A: Numerical bifurcation analysis of the 3-parametric family (27) near
the 3-dimensional nilpotent singularity. (a) A bifurcation diagram is shown in the (µ1, µ2)-
parameter plane, with fixed parameter µ3 = 0.01. A saddle-node bifurcation curve (SN) and
a Hopf bifurcation curve (H) as well as a Hopf-Zero bifurcation point (HZ) and a Bogdanov-
Takens bifurcation point (BT) are found. (b) A region in the (µ1, µ2)-parameter plane is
enlarged to show the segment where the cascades of period doubling bifurcations are detected.
Along such segment µ1 = 0.6182493995438856 is fixed. (c) Two period doubling bifurcations
are shown. (d) Cascades of period doubling bifurcations. The red and green dashed lines are
in correspondence with those in (c).

tends to a certain limit which can be approached by the value of µ2 at the end
point of the continuation, namely, 0.0784693743654685.

It is known that, moving parameters to break the homoclinic orbit, one
should be able to detect the existence of strange attractors. In this case, we
perturb the vector field by changing slightly the value of the µ2 (see Figure 3).
The graphs of the solutions are included to show that the oscillations have a
regular phase rhythm while the abundance peaks in each cycle are unpredictable.
This features of uniform phase and chaotic amplitudes are exhibited by many
biological systems ([20, 19]).
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Figure 2: Model A: Shilnikov homoclinic orbit. The parameters µ1 and µ3 are set as in Figure
1(c). The value of µ2 is 0.0784693743654685, which corresponds to the value at which the
period of the 1-periodic orbit tends to infinity. For that value, the 1-periodic orbit is close
enough to a homoclinic orbit.
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Figure 3: Model A: A strange attractor (left) and the solutions along the strange attractor
(right). When the Shilnikov homoclinic orbit is broken, strange attractors can arise. The
parameters µ1 and µ3 are set as in Figure 1(c) and µ2 = 0.078487896. The initial point in the
plotted orbit is (xi, yi, zi) = (5.803149567, 2.852761453, 0.142024188). This strange attractor
was detected exploring the cascade of period doubling bifurcations. The Maximal Lyapunov
Exponent is close to 0.01.

4.2. Model B

We work with parameters values close to those considered in [20] and, there-
fore, in what follows in this section we set

p = 0, α2 =
38

45
, and k1 =

7

20
.
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Using formulae provided in Proposition 3.3 with s = 11, we get

ẑ0 = 0.070896246, b̂ = 1.4762613, ĉ = 6.8725611, α̂1 = 0.673750,

and hence the equilibrium point is at

x̂ = 11, ŷ = 7.1985158, ẑ = 0.061379431.

Substituting these parameter values in formulae (24), (25) and (26), we easily
obtain

d11 = 9.2137978, d12 = −3.3049085, and ∆ = −8.8232932.

Therefore, Model B is a generic 3-parametric unfolding of a 3-dimensional
nilpotent singularity. The parameters of the unfolding are z0, b and c and a
nilpotent singularity appears at (x̂, ŷ, ẑ) when z0 = ẑ0, b = b̂ and c = ĉ.

To study the bifurcation diagram near the nilpotent singularity, we consider
(µ1, µ2, µ3) as new parameters and work with the family below

x′ = x(1− px)− α̂1x
1+k1y

y,

y′ = −(b̂+ µ2)y + α̂1x
1+k1y

y − α2yz,

z′ = −(ĉ+ µ3)(z − ẑ0 − µ1) + α2yz.

(28)

The theoretical results in section 3 guarantee that family (28) exhibits strange
attractors. To illustrate numerically the chaotic behavior in this family, we set
µ3 = 0.005 and study the bifurcation diagram of (28) in the (µ1, µ2)-parameter
plane. Working with MatCont we obtain the results given in Figure 4. The
explanation of the different panels is identical to the case of Model A and we
do not repeat it here. Only mention that now the cascades of period doublings
are detected fixing µ2 = −0.797211509659839 and considering µ1 as the contin-
uation parameter.

We show an example of Shilnikov homoclinic orbit in Figure 5. Namely, we
plot the orbit which is computed at the end point of the numerical continuation
of the 1-periodic orbit (see blue curve in Figure 4(c)). As period tends to infinity,
parameter µ2 tends to a certain limit which can be approached by the value of
µ1 at the end point of the continuation, namely, −0.0861858348181701.

Finally, we perturb the vector field by changing slightly the value of the µ1

to get an example of strange attractor (see Figure 6). As in case of Model A, the
graphs of the solutions are included to show the uniform phase and the chaotic
amplitudes, features exhibited by many biological systems ([20, 19]).

5. Conclusions

In this paper, we provide an easy-to-check method, based on local bifurcation
theory, to prove the existence of chaotic dynamics in a given model. The generic
conditions which are required to guarantee the emergence of strange attractors
in a generic unfolding of the 3-dimensional nilpotent singularity are reduced to
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Figure 4: Model B: Numerical bifurcation analysis of the 3-parametric family (28) near
the 3-dimensional nilpotent singularity. (a) A bifurcation diagram is shown in the (µ1, µ2)-
parameter plane, with fixed parameter µ3 = 0.005. A saddle-node bifurcation curve (SN) and
a Hopf bifurcation curve (H) as well as a Hopf-Zero bifurcation point (HZ) and a Bogdanov-
Takens bifurcation point (BT) are found. (b) A region in the (µ1, µ2)-parameter plane is
enlarged to show the segment where the cascades of period doubling bifurcations are de-
tected. Along such segment µ2 = −0.797211509659839 is fixed. (c) Two period doubling
bifurcations are shown. (d) Cascades of period doubling bifurcations. The red and green
dashed lines are in correspondence with those in (c).

simple formulas in section 2 (see (11), (12) and (14)). Therefore, this technique
becomes very helpful for further applications in the detection of chaos. In par-
ticular, we apply this method to prove that two different tritrophic chain models
are indeed generic unfoldings of 3-dimensional nilpotent singularities and hence
they exhibit strange attractors (see section 3).

For completeness, in section 4, we numerically illustrate the existence of
strange attractors in the two tritrophic chain models considered and explain
the steps taken. Shortly, for any given model we first consider a point in the
parameter space that satisfies the generic conditions. This means that the model
is a generic 3-parametric unfolding of a 3-dimensional singularity. Second, we
study the bifurcation diagram near the nilpotent singularity to detect a Hopf
bifurcation curve. Third, using numerical techniques for continuation of periodic
orbits, we are able to find a cascade of period doubling bifurcations and hence
strange attractors. Moreover, continuation also allows to allocate parameter
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Figure 5: Model B: Shilnikov homoclinic orbit. The parameters µ2 and µ3 are set as in Figure
4(c). The value of µ1 is −0.0861858348181701, which corresponds to the value at which the
period of the 1-periodic orbit tends to infinity. For that value, the 1-periodic orbit is close
enough to a homoclinic orbit.
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Figure 6: Model B: A strange attractor (left) and the solutions along the strange attrac-
tor (right). The parameters µ2 and µ3 are set as in Figure 4(c) and µ1 = −0.086005637.
The initial point is (xi, yi, zi) = (9.1412254, 6.2329186, 0.089506456) and the chaotic orbit
are detected exploring the cascade of period doubling bifurcations. The Maximal Lyapunov
Exponent is close to 0.02.

values for which the systems exhibits Shilnikov homoclinic orbits.
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[17] F. Dumortier, S. Ibáñez, H. Kokubu, New aspects in the unfolding of the
nilpotent singularity of codimension three, Dyn. Syst. 16 (1) (2001) 63–95.
doi:10.1080/02681110010017417.

[18] P. G. Barrientos, S. Ibáñez, J. A. Rodŕıguez, Heteroclinic cycles arising in
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[41] A. Pumariño, J. A. Rodŕıguez, Coexistence and persistence of strange at-
tractors, Vol. 1658 of Lect. Notes Math., Springer-Verlag, Berlin, 1997.
doi:10.1007/BFb0093337.
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