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Abstract We introduce algorithms for the computation of homology, cohomology, and re-
lated operations on cubical cell complexes, using the technique based on a chain contraction
from the original chain complex to a reduced one that represents its homology. This work is
based on previous results for simplicial complexes, and uses Serre’s diagonalization for cu-
bical cells. An implementation in C++ of the introduced algorithms and some examples are
available at http://www.pawelpilarczyk.com/chaincon/. The paper is self-contained as much
as possible, and is written at a very elementary level, so that basic knowledge of algebraic
topology should be sufficient to follow it.
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Introduction

A full cubical set in Rn is a finite union of n-dimensional boxes of fixed size (called cubes
for short) aligned with a uniform rectangular grid in Rn. Due to the product structure and
alignment with coordinate axes, using full cubical sets for approximating bounded subsets of
Rn is very natural: a cube containing a point x = (x1, . . . ,xn)∈Rn can be instantly calculated
by simply truncating the Cartesian coordinates of x down to the nearest grid thresholds. For
simplicity of notation, these thresholds can be set to the integers, so that the cubes are of
unitary size. Such cubical sets naturally correspond to 2D and 3D binary images.
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By analogy to simplicial complexes (see e.g. Munkres 1984), sets of cubes with their
vertices, edges, faces, etc., yield a natural chain complex structure, which can be used to
compute their homology groups. We refer to Kaczynski et al (2004) for a comprehensive
study of this subject, and to the Computational Homology Project (CHomP) software (2013)
and the Computer Assisted Proofs in Dynamics (CAPD) group (2013) for a representative
implementation of homology computation algorithms focused specifically on cubical sets.

Homology computation of cubical sets has already found some interesting applications.
To mention a few of them, homology was used to extract topological information from med-
ical images (e.g. Niethammer et al 2002), to classify the complexity of patterns coming from
numerical simulations of PDEs (Gameiro et al 2004, e.g.) or from physical experiments (e.g.
Krishan et al 2007), and also in an automatized method for the computation of the Conley
index from index pairs constructed as cubical sets in Rn (Mischaikow et al 2005; Pilarczyk
and Stolot 2008), used e.g. in a method for editing vector fields and extraction of periodic
orbits (Chen et al 2007), and also very helpful in an automatic method for classification
of dynamics in multi-parameter systems (Arai et al 2009; Bush et al 2012), which found
applications e.g. in population biology (Liz and Pilarczyk 2012) and in physics of plasmas
(Pilarczyk et al 2012). Homology has also been proposed as a reliable criterion for thinning
binary images of arbitrary dimension (Niethammer et al 2006).

With the increasing use of data structures based upon cubical sets in various applica-
tions, which often require the determination of certain topological features of the sets under
consideration, the importance of the development of efficient algorithms for the computation
of comprehensive algebraic-topological invariants of such sets is undeniable. Our work is
aimed at contributing to this field of research by providing effective algorithms for the com-
putation of comprehensive homological information on cubical sets. A prototype software
implementation of these algorithms which allows for experimenting with sample datasets is
published at the project’s website (Pilarczyk 2013).

In a typical approach to homology computation (see e.g. Agoston 1976; Munkres 1984;
Veblen 1931), which we call the differential approach here, the matrices of the boundary
homomorphisms ∂q (the differential of the chain complex) are reduced to the Smith Normal
Form (SNF), from which the homology groups are determined. In the integral approach, on
the other hand, in addition to the computation of the homology groups, one also constructs
degree +1 homomorphisms φq : Cq→Cq+1, which record the information on a chain con-
traction of the entire chain complex C to a reduced chain complex that represents its homol-
ogy (see e.g. Eilenberg and Mac Lane 1954; Sergeraert 1994; Shih 1962). This contraction
provides much more comprehensive homological information which may be important for
various applications. In particular, it allows one to calculate a representative cycle for each
homology class, to find the homology class of every cycle, and to compute the coboundary of
every homologically trivial cycle (that is, find the chain c′ such that c = ∂c′ if [c] = [0]). Ob-
viously, the computational cost of the integral approach is higher, especially because much
more information needs to be stored. This additional information which is normally lost
in the differential approach, however, may be essential in specific applications, e.g. for the
computation of various homological or cohomological operations, as we show in Section 4.

Intuitively speaking, the profound difference between the differential approach and the
integral one is that the former aims at reducing the topological information to a minimal
linear system that describes the degree of connectivity of the subdivided objects, while the
latter provides a dense algebraic skeleton for representing these objects. Unfortunately, this
latter approach is very under-represented in the literature; only some works of Sergeraert
relating to effective homology (see e.g. Sergeraert 1992) and those regarding AT models
and AM models (referred to below) emphasize this aspect of homological constructions.
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The integral approach was applied to the computation of the cohomology ring and some
other cohomology operations in the context of simplicial complexes by González-Dı́az et al
(2009); González-Dı́az and Real (1999, 2003, 2005a,b); Real (1996). The philosophy behind
this approach, as described by González-Dı́az and Real (2005a), is to deduce cohomology
operation formulas at (co)chain level in terms of face operators on simplices, and to use
the chain contractions to correctly transfer these operations to the cohomology level. In
order to use this methodology in the cubical setting, the most straightforward idea would
be to construct a simplicial representation of a cubical set and to apply the existing theory
and algorithms to this simplicial complex. However, this induces a considerable overhead,
especially in higher dimensions, not to mention the additional effort necessary to express
the obtained simplicial chains in terms of cubical chains. A much more effective solution is
thus to transfer the computational cohomology approach from simplicial to cubical setting.
Therefore, the main aim of our work is to develop efficient (co)homology algorithms directly
on the cubical structure, skipping the intermediate steps. As the main tool for this purpose,
we are going to use an algebraic-topological model (AT model, see Definition 1) and an
algebraic minimal model (AM model, see Definition 2). These notions have already proved
useful in several publications (e.g. Berciano et al 2012; González-Dı́az et al 2006; González-
Dı́az and Real 1999, 2005b; Molina-Abril and Real 2012; Real and Molina-Abril 2009).

The worst-case complexity of homology computation, independent of the approach, is
in general cubical if the ring of coefficients is a field, or a little higher yet polynomial oth-
erwise, because of the need to compute the SNF of the boundary matrices (either explicitly
or implicitly). Although this is too expensive for processing large datasets that appear in
practical applications, various reduction techniques help decrease the size of the data con-
siderably without loss of homological information (see e.g. Mrozek et al 2008), and thus
achieve much better performance in practice. These reduction techniques may come from
geometric representation of the data, or be derived from other heuristics. As an interest-
ing example, Dłotko and Specogna (2013) introduced a physics inspired algorithm for the
computation of the first cohomology group on three-dimensional complexes whose average
running time was linear in their experiments, even though theoretically estimated worst-case
complexity was cubical.

Although several software packages that aim at (co)homology computation already ex-
ist, none of them, as far as we are aware, can be used to achieve the functionality of our ap-
proach. To name a few most prominent examples, Plex and Dionysus are powerful projects
aimed at simplicial persistent (co)homology computation, CHomP and CAPD/RedHom fo-
cus on the development of efficient homology algorithms for cubical sets using the differen-
tial approach. There are also some modules in large mathematical software packages, such
as GAP or SAGE, but they all have limited capabilities and are using the differential ap-
proach. In particular, our contribution fills an important gap in the collection of publicly
available homological software.

Since the construction of a chain contraction has a considerable additional cost in com-
parison to using the differential approach (in which all this information is lost), it is obvi-
ously pointless to use the integral approach if one aims at the computation of (co)homology
groups (possibly with their generators) of a cellular complex alone. The integral approach,
however, provides a considerably more efficient solution in cases where the chain contrac-
tion is actually useful. For instance, if one needs to compare homology classes of various
cycles that are not known a priori then using the differential approach might incur consider-
able cost of processing each cycle, while the integral approach provides an instant answer. In
particular, comparison of effectiveness of software that uses the differential approach with
software that is based upon the integral approach might be very tricky and will strongly de-
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pend on a particular application. Therefore, in order to avoid the introduction of misleading
information, in this paper we purposely refrain from any speed comparison between our
software and the other homology packages.

In Section 1, we introduce the terminology and we carefully define all the notions to
be used throughout the remainder of the paper; in particular, we define an AT model and
an AM model for a finite cell complex. In Section 2, we provide explicit algorithms for the
computation of AT models and AM models. In Section 3, we show how to retrieve selected
homological information from the AT models and AM models, such as (co)homology gen-
erators. In Section 4, we use this approach to compute the cup product based on formulas at
chain level for cubical complexes. In Section 5, we discuss certain additional constructions
and variants, like relative (co)homology or reduced (co)homology, which our machinery is
capable of handling with very little additional effort. Finally, in Section 6, we briefly de-
scribe the prototype software and selected examples that have been made available at the
project’s website (Pilarczyk 2013), which concludes the paper.

1 Preliminaries

Let R be a Euclidean domain (see e.g. Jacobson 2009, §2.15), that is, a principal ideal domain
equipped with the function δR : R→ Z that assigns a non-negative integer to each element
of the ring, such that for every a,b ∈ R, b 6= 0, there exist q,r ∈ R for which a = qb+ r and
δR(r) < δR(b). Intuitively speaking, we assume that R is a commutative ring in which the
dividing with remainder is a valid operation. Note that δR(k) = 1 if and only if k ∈ R has its
inverse in R, δR(0) = 0, and δR(a)> 1 for all the non-invertible elements a∈R. In the case of
the ring or integers Z, one can take δZ(k) := |k|. If R is a field, such as the integers modulo a
prime number p, denoted Zp (the field frequently used in homology computation, especially
for p = 2), or the rational numbers, Q, then δR(k) = 1 for all k 6= 0. An interesting though
rarely used in this situation example of a suitable ring might be the ring of polynomials
in one variable, with δR corresponding to the degree of the polynomial increased by 1 and
δR(0) := 0.

A chain complex (see e.g. Munkres 1984) is a graded free abelian group {Cq}q∈Z with
a degree −1 homomorphism ∂q : Cq → Cq−1 such that ∂∂ = 0, called the boundary oper-
ator or the differential of the chain complex. Such a complex arises naturally from a cell
complex structure, where each Cq is a free abelian group whose generators correspond to q-
dimensional cells, and for each q-dimensional cell c, ∂q(c) is a linear combination of (q−1)-
dimensional cells in the boundary of c with the coefficients reflecting incidence numbers and
orientation. Thanks to the requirement that ∂∂ = 0, the group of boundaries B := im∂ is a
subgroup of the group of cycles Z := ker∂ , and thus the homology group H := Z/B is well
defined; since it is an invariant of the topological space (polyhedron) which is the union
of all the cells in the complex, it is also called the homology of the topological space. The
homology class of a chain a ∈Cq is denoted by [a].

Let K be an n-dimensional cell complex, also called a CW complex; see e.g. Hatcher
(2002, Ch. 0) for the definition. Denote the set of its q-dimensional cells by K(q). Through-
out the entire paper, we shall assume that the number of cells in the complex is finite. The
corresponding chain complex (Cq(K),∂q)q∈Z over R consists of the free R-modules of q-
chains Cq, whose elements are formal combinations of the cells in K(q) with coefficients
in R, and a family of homomorphisms ∂q : Cq → Cq−1 such that ∂q−1 ◦ ∂q = 0 and ∂q(σ)
is a combination of (q− 1)-dimensional cells that appear in the boundary of σ with coef-
ficients corresponding to the orientation and multiplicity of these cells (we shall provide
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explicit formulas in the case of a simplicial complex and a cubical complex below). Note
that Cq(K) = 0 whenever q < 0 or q > n. If R =Z then each Cq is a free abelian group. If R is
a field then each Cq is a vector space over R. Since we assume that the number of cells in K
is finite, all the R-modules under consideration are finitely generated. On each Cq, we define
a bilinear form Cq×Cq 3 (c,c′) 7→ 〈c,c′〉 ∈ R on each pair of generators σ ,τ ∈ K(q) of Cq
as follows: 〈σ ,τ〉 := 1 if σ = τ and 〈σ ,τ〉 := 0 otherwise. This bilinear form is a frequently
used formal construct for extracting the coefficient that appears in a chain at a given cell (see
e.g. Kaczynski et al 2004).

As for the actual formula for the boundary operator ∂ , the case of a simplicial complex
is well established (see e.g. Hatcher 2002). If a simplex of dimension q > 0 is identified by
the (q+ 1)-tuple of its (pairwise different) vertices, that is, σ = (v0, . . . ,vq), then ∂q(σ) =

∑(−1)i(v0, . . . , v̂i, . . . ,vq), where the hat over vi means that vi is omitted in the q-tuple, and
∂q = 0 if q≤ 0 or q > n.

The case of a cubical complex is less typical, so we recall some definitions in order to
avoid any ambiguity. The reader is referred to Kaczynski et al (2004) for a comprehensive
introduction; we also follow some notation from Serre (1951). An elementary interval is
an interval of the form [k,k+1] (the non-degenerate case) or a set {k}, also denoted as the
interval [k,k] or even [k] (the degenerate case), where k ∈ Z. An elementary cube in Rn is
the Cartesian product of n elementary intervals, and the number of non-degenerate intervals
in this product is its dimension.

Let σ = I1×·· ·× In be an elementary cube in Rn, where I j = [a0
j ,a

1
j ] (possibly a0

j = a1
j ).

Let k1, . . . ,kq denote those indices that correspond to non-degenerate intervals Ik j = [a0
k j
,a1

k j
]

in σ (q is the dimension of σ ). For a set J ⊂ {1, . . . ,q}, let J′ denote the complement of
J in {1, . . . ,q}. Define k(J) := {ki : i ∈ J}, and for i ∈ {0,1} define the elementary cube
λ i

Jσ := I′1×·· ·× I′n, where I′j = {ai
j} if j ∈ k(J) or I′j = I j otherwise. If cardJ = 1, we shall

write λ i
j instead of λ i

{ j}. Then define the boundary of σ as follows (see Serre 1951, p. 440
in the context of singular cubes):

∂q(σ) :=
q

∑
j=1

(−1) j(λ 0
j σ −λ

1
j σ).

The homology module of a finite cell complex is a finitely generated module over R, and
the classification theorem of finitely generated modules over a p.i.d. (see e.g. Jacobson 2009,
§3.9) implies that its description is rather simple: It is a direct sum of its torsion submodule
and its free submodule, where the former is a direct sum of primary cyclic modules, and both
are finitely generated. Therefore, the homology module

(
Hq(K)

)
q∈Z is characterized by the

ranks of the free submodules for each Hq(K), each called the q-th Betti number and denoted
βq(K), respectively, and the torsion coefficients, which describe the torsion submodules of
each Hq(K).

Intuitively speaking, homology groups provide information about different kinds of
holes in the space. Namely, β0 corresponds to the number of connected components (see
also the note on reduced homology in Section 5), β1 is the number of linearly independent
holes (like the one inside a circle), β2 counts the number of voids (like the one surrounded
by a sphere), and in general βq corresponds to the number of defects of the space that look
like the hollow space inside the q-dimensional unitary sphere in Rq+1. See the figures and
discussion in Section 6 for some examples of topological spaces and their homology groups.

Dual concepts lead to the definition of cohomology of a cell complex K, as follows. The
cochain complex (Cq(K),δ q)q∈Z of K over R consists of homomorphisms from Cq to R,
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Cq(K) := Hom(Cq(K);R). The coboundary operator, as the dual to ∂ , is given by the for-
mula

(
δ q(c)

)
(a) := c

(
∂q+1(a)

)
for c ∈ Cq(K) and a ∈ Cq+1(K). A cochain a ∈ Cq(K) is

called a q-cocycle if δ q(a) = 0. If a = δ q−1(a′) for some a′ ∈ Cq−1(K) then a is called
a q-coboundary. The q-th cohomology module Hq(K) of K is the quotient module of q-
cocycles and q-coboundaries. The cohomology class of a cochain a ∈ Cq(K) is denoted
by [a]. Although the cohomology groups can be determined from the homology groups us-
ing the universal coefficient theorem for cohomology (see e.g. Munkres 1984, § 53, p. 320),
we prefer a direct approach here in order to efficiently use the additional structures neces-
sary in the integral approach, as it will be clear in the sequel. Moreover, note that while
chains can be perceived as column vectors containing coefficients of the combinations of
cells in K, cochains correspond to row vectors containing coefficients of the dual cochains
corresponding to single cells in K (cf. Desbrun et al 2006).

If C∗ = {Cq,∂q} and C′∗ = {C′q,∂ ′q} are two chain complexes then a chain map f∗ : C∗→
C′∗ is a family of homomorphisms { fq : Cq→C′q}q∈Z such that ∂ ′q fq = fq−1∂q. A chain con-
traction from C∗ to C′∗ is a triple ( f ,g,φ) of chain maps f : C∗→C′∗ (projection), g : C′∗→C∗
(inclusion) and φ : C∗→C∗+1 (chain homotopy or integral operator) that satisfy the follow-
ing conditions:

(a) IdC−g f = ∂φ +φ∂ ;
(b) f g = IdC′ ;
(c) f φ = 0;
(d) φg = 0;
(e) φφ = 0.

This is a classical notion in homological algebra and algebraic topology; see e.g. Eilenberg
and Mac Lane (1953, §12) and comments on the terminology and applications by González-
Dı́az and Real (2003, p. 86). Note that because of the condition (a), if there exists a chain
contraction from C∗ to C′∗ then their homology and cohomology modules are isomorphic.

A homomorphism φ : C∗ → C∗+1 is called a homology gradient vector field if the fol-
lowing conditions hold:

(a) φφ = 0;
(b) ∂φ∂ = ∂ ;
(c) φ∂φ = φ .

A chain contraction in which φ is a homology gradient vector field is called homology
integral chain contraction.

Definition 1 (AT model) An algebraic-topological model (introduced by González-Dı́az
et al 2006), or an AT model for short, of a cell complex K, is a homology integral chain
contraction from C∗(K) to some free chain complex M∗ with null differential.

The complex M∗ in an AT model of K is isomorphic to the homology module of K. An
AT model exists for a cell complex if and only if its homology is torsion-free (e.g. if R is
a field), and any two AT models of the same complex are isomorphic. Figures 1-3 show an
example of a cubical complex, its AT model, and a sample application of the AT model to the
computation of the coboundary of a homologically trivial cycle. This example is included in
the software package available from the project’s website (Pilarczyk 2013), and the results
shown here were actually obtained by the software.

In fact, given an integral operator φ on C∗(K), that is, a homomorphism φ : C∗(K)→
C∗+1(K) satisfying φφ = 0, it is possible to algebraically determine the other components
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0 1 2 3 4

1

2

3

Fig. 1 A sample cubical set K in R2 consisting of nine squares (indicated in gray), two additional 1-
dimensional segments ([3,4]× [0] and [4]× [0,1]) and an isolated point ([4]× [3]). Its homology groups over
Z2 are: H0 ∼=Z2⊕Z2, H1 ∼=Z2⊕Z2, and Hq is trivial for q /∈ {0,1}. Indeed, the set consists of two connected
components and has two holes.

a1

b1

a2

b2

0 1 2 3 4

1

2

3

Fig. 2 An AT model (see Definition 1) of the cubical set K shown in Figure 1 computed with Algorithm 1 (see
Section 2). Representants of the four homology generators are: a1 = [4]× [3], a2 = [0]× [1], b1 = [3,4]× [0]
and b2 = [0]× [0,1]. These cells correspond to a basis of M∗. Their images by the inclusion g are homology
generators of C(K): g(a1) = a1, g(a2) = a2, g(b1) is the loop around the entire gray area, indicated in the
figure with a thick line (red online), and g(b2) is the boundary of the missing square in the lower right corner,
indicated in the figure with another thick line (green online).

0 1 2 3 4

1

2

3

Fig. 3 Sample computation of a coboundary of a homologically trivial cycle, using the integral operator φ

computed as part of the AT model of K (shown in Figures 1 and 2). Consider the cycle c = c1 + c2 + c3 + c4,
indicated with thick lines in the figure, with c1 = [1,2]× [0] (green online), c2 = [2]× [0,1] (pink online),
c3 = [1,2]× [1] (gray), and c4 = [1]× [0,1] (blue online). The integral operator applied to these cells is as
follows: φ(c1) = 0, not shown in the figure, φ(c2) = [2,3]× [0,1] + [2,3]× [1,2] + [3,4]× [1,2], the three
squares shaded in dark gray (in print) or in dark pink (online), φ(c3) = 0, not shown, and φ(c4) = [1,2]×
[0,1]+ [2,3]× [0,1]+ [2,3]× [1,2]+ [3,4]× [1,2], the four squares indicated with dashes. As a consequence,
φ(c) = c′, where c′ = [1,2]× [0,1]. One can check that indeed ∂c′ = c (note the field Z2 of coefficients).
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of the chain contraction (see e.g. González-Dı́az et al 2009; Real 2009; Real and Molina-
Abril 2009); however, direct construction of M∗ and the chain contraction of C∗(K) to M∗
(provided in Algorithm 1) makes it easier to obtain explicit representations of homology and
cohomology generators (as we show in Section 3).

Definition 2 (AM model) An algebraic minimal model (introduced by González-Dı́az and
Real 2003), or an AM model for short, of a cell complex K is a chain contraction from
C∗(K) to a chain complex (M,d) such that each Mq is a free R-module and all the non-zero
elements in the SNF of each dq are non-invertible in R.

An AM model exists for every cell complex, and any two AM models for the same
complex are isomorphic. Moreover, an AM model of a complex K is isomorphic to an AT
model of K if the latter exists.

AT models and AM models are the main tools in our approach to computing compre-
hensive homological information for cell complexes.

2 Algorithms for the computation of chain contractions

Given a cell complex, the following algorithm constructs another complex that represents its
homology and computes a homology integral chain contraction of the original cell complex
to the new one. It is based on the incremental homology computation algorithm (Delfinado
and Edelsbrunner 1993, 1995), and in its original form was introduced by González-Dı́az
et al (2006). Below, we provide this algorithm, rewritten in a detailed way so that the chain
maps are defined with respect to the original basis in K and an explicitly constructed set of
generators of M∗, which is crucial for effective implementation and for applications.

The input of the algorithm consists of the list of all the cells of a cell complex K ordered
as a filter (c0, . . . ,cm−1), that is, for each i = 0, . . . ,m− 1, the set {c0, . . . ,ci} forms a valid
cell complex. In other words, all the cells that appear in the boundary of each cell must
precede the cell in the list. A simple filter may be created by sorting the cells in K by their
dimension in the ascending order. We assume that a formula for the boundary of each cell
is given as a combination of lower-dimensional cells. In order to be consistent with the
software implementation, we choose the convention of the C++ programming language to
index sequences starting from 0. In order to emphasize the meaning of the components of
the chain contraction ( f ,g,φ) being constructed, we denote the projection f by π and the
inclusion g by ι in the algorithm. The maps π and φ are defined on generators of their
domains, and we transparently use them as homomorphisms. The chain complex M∗ with
the differential d = 0 is represented by means of the set of generators M corresponding to
selected cells from K, with their dimension q corresponding to the level q of Mq. We use the
subscript index i to indicate the objects constructed at each run of the main loop, but in the
software implementation only one instance of these objects exists, and is modified during
the computations, so that upon completion of each loop, the previous instance is replaced
with the new one.

Algorithm 1 (AT model computation)

INPUT:
(c0, . . . ,cm−1) — a filter of a cell complex K;
∂ — the boundary operator on C∗(K).
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PSEUDOCODE:
M−1 := /0; φ−1 := 0; π−1 := /0; ι−1 := /0;
for i := 0 to m−1 do

φi(ci) := 0;
c̄i := ci−φi−1(∂ci);
if ∂ c̄i = 0 then

Mi := Mi−1∪{ci};
ιi(ci) := c̄i;

πi(ci) := ci;

for j := 0 to i−1 do

φi(c j) := φi−1(c j);
πi(c j) := πi−1(c j);

for all h ∈Mi−1 do

ιi(h) := ιi−1(h);
else

take any ui ∈Mi−1 such that λi := 〈ui,πi−1(∂ c̄i)〉 6= 0;
πi(ci) := 0;
for j := 0 to i−1 do

η i
j := 〈ui,πi−1(c j)〉;

if η i
j 6= 0 then

φi(c j) := φi−1(c j)+η i
jλ
−1
i c̄i;

πi(c j) := πi−1(c j)−η i
jλ
−1
i πi−1(∂ c̄i);

else

φi(c j) := φi−1(c j);
πi(c j) := πi−1(c j);

Mi := Mi−1 \{ui};
ιi := ιi−1|Mi;

OUTPUT:
Mm−1 — a set of generators of M∗;
(πm−1, ιm−1,φm−1) — a chain contraction.

The idea of the algorithm is the following. We process all the cells in the input filter one
by one. For each cell ci, we initially set φ(ci) = 0, which may be later modified if necessary.
If ci is found to be a cycle then it is added to M , and the values of ι and π are set accordingly.
Otherwise, a collapse of ci through one of its faces ui is carried out. This means that ci is not
added to M , and ui is removed from M , with the homomorphisms φ and π being modified
accordingly to reflect the collapse in which the face ui is replaced by the remainder of the
boundary of ci.

Note that because of the need to compute the inverse of λi, it is necessary to assume
the invertibility of all the coefficients encountered in the run of the algorithm at the relevant
place; therefore, the algorithm may only be applied safely for field coefficients.

Proposition 1 (see González-Dı́az et al (2006)) In the case of coefficients in a field, Algo-
rithm 1 applied to a filter of a cell complex K returns an AT model of K.

If the coefficients form a ring which is not a field (e.g. the integers Z) then Algo-
rithm 1 may fail, and thus a more general algorithm must be used. The constructed object is
then an AM model. We adapt the algorithm introduced by González-Dı́az and Real (2003);
González-Dı́az et al (2009) to obtain a chain contraction and a chain complex (M∗,d) ex-
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plicitly, with respect to the original basis in C∗(K) that corresponds to the cells in K. This al-
gorithm requires the computation of the Smith Normal Form (SNF) D of the entire boundary
matrix ∂ , together with the change-of-basis matrix A and its inverse A−1. More specifically,
given the matrices of all ∂q, it is necessary to compute matrices Dq, Aq and A−1

q such that
Dq is in the SNF and Dq = A−1

q−1∂qAq. We say that D is in the SNF and all the entries of D
are zero except possibly for λ1,1, . . . ,λl,l , for some l ≥ 0, with each λi,i dividing λi+1,i+1 for
i = 1, . . . , l−1.

The subject of the development of effective algorithms and software for computing the
SNF is an intensively investigated area of research on its own. Although the original algo-
rithm given by Smith (1861) (see also Munkres 1984) has exponential worst-case complex-
ity, as is the case of the naive approach using elementary column and row operations, there
exist algorithms for computing the SNF in polynomial time for coefficients in Z (e.g. Il-
iopoulos 1989; Kannan and Bachem 1979; Storjohann 1996), and different variants of these
algorithms for solving this problem exist, also crafted to special cases or environments (e.g.
for concurrent systems by Jäger and Wagner 2009). Unfortunately, these general algorithms
turn out to be insufficient for homology computation in practical applications, because of
the need to process huge matrices, with hundreds of thousands of rows and columns. How-
ever, the boundary matrices derived from cellular complexes are very sparse, that is, have a
very small number entries in their columns and rows, which can be used for designing more
efficient algorithms (e.g. Dumas et al 2001). Indeed, simple reduction techniques motivated
by geometric interpretation of the data may dramatically reduce the matrices in size before
coming to a point where no more reductions of this type can be applied and thus the general
algorithm for the computation of the SNF must be used. The work by Forman (1998) is often
used as an inspiration for such reduction techniques. Each geometric reduction corresponds
to a change of bases, and thus the matrices A and A−1 may be incrementally constructed
during the procedure. These reductions correspond e.g. to collapsing external faces or to
joining adjacent cells, which were a basis for an algorithm for homology computation by
reduction of chain complexes introduced by Kaczyński et al (1998). Its generalization was
implemented in the Computational Homology Project (CHomP) software (2013) (see also
Kaczynski et al 2004) and is used in the software package available at the project’s website
(Pilarczyk 2013). This specific algorithm constructs the SNF matrix Dq of each ∂q sepa-
rately, and takes care of keeping generators corresponding to the columns and rows of the
already computed SNF at adjacent levels intact, so that, as a result, new bases of all Cq are
computed, such that with respect to these bases, all the matrices Dq of ∂q are in the SNF.

Algorithm 2 (AM model computation)

INPUT:
(c0, . . . ,cm−1) — a filter of a cell complex K;
∂ — the boundary operator on C∗(K).

PSEUDOCODE:
compute bases {eq

1, . . . ,e
q
mq} of each Cq(K) in which

the matrices Dq of ∂q are in the SNF;

let Ai denote the corresponding

change-of-basis matrices: Di = A−1
i−1∂iAi;

for q := 0 to dimK do

for i := 1 to mq do

if Dqeq
i 6= 0 then
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let j and λ
q−1
j be such that Dqeq

i = λ
q−1
j eq−1

j ;

if λ
q−1
j is invertible then

ψq−1(eq−1
j ) := λ

q−1
j eq

i ;

continue (take the next i);
else

Mq−1 := Mq−1∪{mq−1
j };

dq(mq
i ) := λ

q−1
j mq−1

j ;

if there exists k and an invertible λ
q
i

such that Dq+1(e
q+1
k ) = λ

q
i eq

i then

continue (take the next i);
ψq(eq

i ) := 0;
Mq := Mq∪{mq

i };
ι(mq

i ) := A−1
q (eq

i );
for each j such that γ

q
j := 〈Aq(c j),e

q
i 〉 6= 0 do

π(c j) := π(c j)+ γ
q
j mq

i ;

φq−1 := Aqψq−1A−1
q−1;

OUTPUT:
M — a set of generators of M∗;
d — a differential on M∗;
(π, ι ,φ) — a chain contraction.

This algorithm is valid in the general case, with coefficients in a Euclidean domain.
Note that if H∗(K) has no torsion then this algorithm actually produces an AT model of K,
because then the differential of M∗ is 0. Moreover, if the coefficient ring is a field then SNF
can be computed in cubic time using the simple method based on Gaussian elimination (see
e.g. Kaczyński et al 1998).

The idea of the algorithm is to determine the generators of M∗ and the differential d
on M∗, as well as the corresponding chain contraction, directly from the SNF of the boundary
operator on K. More specifically, we consider all the elements e1

i of a computed collection
of bases of Cq(K) in which the boundary matrices are all in the SNF. If the boundary of eq

i is
nonzero then one can deduce that eq

i is not in the boundary of any eq+1
j , because DqDq+1 = 0.

In this case, if λ
q−1
j is invertible then the pair (eq

i ,e
q−1
i ) corresponds to a reduction of the

chain complex (a collapse of a cell through its face), and this relation is stored in the chain
homotopy operator ψq−1. If λ

q−1
j is non-invertible, on the other hand, then a torsion in

(co)homology will arise. Indeed, in this case, eq−1
j is a cycle (note that the boundary of eq−1

j
is trivial, because Dq−1Dq = 0), and at the same time it is not a boundary, while its multiple
λ

q−1
j eq−1

j is a boundary. The projection and inclusion components of the chain contraction
can be determined from the matrices Aq and A−1

q , and the chain homotopy operator ψ must
be transferred to φ in the original bases also using A and A−1.

Proposition 2 (see González-Dı́az and Real (2003)) Algorithm 2 applied to a filter of a
cell complex K returns an AM model of K. Moreover, for each e ∈M , either d(e) = 0, or
there exists e′ ∈M such that d(e) = γe′ with a non-invertible γ ∈ R.

An generic implementation in C++ of Algorithms 1 and 2 is the main part of the software
package available at the project’s website (Pilarczyk 2013), and discussed in Section 6.
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3 Homology and cohomology

Let ( f ,g,φ ,M∗,d) be an AM model of a cell complex K with the boundary operator denoted
by ∂ , or an AT model of K if d = 0. In this section we shall show how to derive various
homological features of K from this model.

The first obvious information to obtain from the AM model of K is a representation of
homology of K and cohomology of K. If d = 0 (i.e., this is actually an AT model) then
M∗ ' H∗(K), and both Algorithms 1 and 2 provide a set representing a basis of H∗(K),
which is a free module. By duality, in this case H∗(K) ' H∗(K) and cohomology genera-
tors are the duals to homology generators. Otherwise, if d 6= 0, some processing of the AM
model is necessary; for example, the procedure based on SNF computation of the boundary
homomorphisms may be applied to (M∗,d) in order to determine the torsion coefficients of
H∗(K) and of H∗(K), as well as the Betti numbers. Fortunately, (M∗,d) is a much smaller
object than (C∗(K),∂ ), so the expected cost of such computation is negligible, even if a sim-
ple (naive) algorithm is applied at this stage. In fact, as stated in Proposition 2, Algorithm 2
actually computes a basis M for M∗, in which the matrix of d is already in the SNF. Then
the set of those eq ∈Mq (Mq is a basis of Mq) for which dq(eq) = 0 corresponds to a set
of generators of Hq(K). If there exists eq+1 ∈Mq+1 such that dq+1(eq+1) = γeq with a non-
invertible γ ∈ R, then eq corresponds to a generator of a cyclic submodule of Hq(K) with
the torsion coefficient γ; otherwise, eq generates a free submodule of Hq(K). The number of
generators of the latter type is the q-th Betti number of K (see e.g. Munkres 1984). Repre-
sentative cycles that correspond to the homology generators of K can be instantly obtained
by applying the map g to those elements of M whose boundary is zero, which results in
chains in C(K) that are linear combinations of cells in K with coefficients taken from the
columns of the matrix representing g in the natural basis in K corresponding to the cells in
K and the computed basis M of M∗.

By duality, each generator eq ∈Mq of Mq such that δqe∗q = 0 (that is, there is no
e′q+1 ∈Mq+1 such that dq+1(e′q+1) = γeq with γ 6= 0) corresponds to a distinct element
in a set of generators of Hq(K), and each non-invertible coefficient that appears in δqe∗q (or,
equivalently, in dq+1(e′q+1)) corresponds to a torsion coefficient in Hq+1(K), with a gen-
erator of the corresponding torsion submodule given by e′q+1 such that dq+1(e′q+1) = γeq.
The actual cocycle in C∗(K) that corresponds to a generator e∗ of M∗ (dual to e ∈M ) is
e∗ ◦ f : C∗(K)→ R; the matrix of this map consists of the row corresponding to e in the
matrix of f .

If c∈C∗(K) is a cycle then its homology class can be instantly determined by calculating
f (c), which provides a linear combination of elements of M . Moreover, if this class is
trivial, that is, f (c) = 0, then a sample chain c′ ∈C∗(K) such that ∂c′ = c can also be found
easily: c′ := φ(c). By duality, if c∈C∗(K) is a cocycle then a representant of its cohomology
class is c◦g : M∗→ R; the matrix of this map consists of a single row containing the linear
combination of elements of the dual basis of M∗.

For i = 1,2, let ( fi,gi,φi,Mi
∗,d

i) be an AM model of the corresponding cell complex Ki
with the boundary operator denoted by ∂ i. Using the chain maps gi to obtain representative
cycles of homology classes and fi to project cycles to homology gives a straightforward
way of computing the homomorphism induced in homology by a chain map h : C(K1)→
C(K2). Namely, for each homology generator of H∗(K1) represented by e1

q ∈M 1
q , one

can compute its image by H∗(h) as f2(h(g1(e1
q))) ∈ M2

q , and the matrix of H∗(h) : M1
∗ →

M2
∗ is the matrix of the homomorphism f2 ◦ h ◦ g1. Using the duality, the homomorphism

H∗(h) : Hom(M2
∗ ;R)→Hom(M1

∗ ;R) induced in cohomology by the map h applied to e : M2
∗→
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R is given by the formula H∗(h)(e) = e◦ f2 ◦h◦g1 : M1
∗ → R, and thus the matrix of H∗(h)

is the transpose of the matrix corresponding to f2 ◦h◦g1.
The same idea can also be used for the computation of operations that are defined at

the chain level and carry over to (co)homology (see González-Dı́az and Real 2003, Pro-
cedure 2): One would take (co)chains that correspond to (co)homology generators, apply
the operation to these (co)cycles at the (co)chain level, and then compute the (co)homology
class(es) of the resulting (co)cycle(s). This idea was used for computing more advanced
(co)homology operations (e.g., Steenrod cohomology operations) in the context of simpli-
cial complexes by González-Dı́az and Real (1999, 2003, 2005a); Real (1996, 2000), and
we apply it in Section 4 to compute the cubical cup product in cohomology and the cubical
version of Alexander-Whitney coproduct in homology.

4 Cubical cup product

The cup product in cohomology is a well known additional structure which transforms the
cohomology module of a cell complex into a ring. Although less popular, there is a directly
corresponding structure in homology, the Alexander-Whitney coproduct. These operations
are defined for simplicial homology by easy and natural formulas at the chain level, but the
corresponding formulas for cubical complexes are not that straightforward. Therefore, we
devote this section to providing explicit formulas for both operations in the case of cubical
complexes, and to discussing various solutions.

The cup product of two simplicial cochains c ∈ Ck(K) and c′ ∈ Cl(K) is a cochain
c ^ c′ ∈Ck+l(K) defined on each generator of Ck+l corresponding to a single simplex σ =
(v0, . . . ,vk+l) as follows:

(c ^ c′)(σ) := c(σ k
0 ) · c′(σ k+l

k ),

where σ k
0 = (v0, . . . ,vk) and σ

k+l
k = (vk, . . . ,vk+l), and the dot indicates the multiplication in

the ring R. This definition is extended to arbitrary chains by linearity.
The Alexander-Whitney coproduct of a chain consisting of a single n-dimensional sim-

plex σ = (v0, . . . ,vn) is given by the formula

AW(σ) =
n

∑
k=0

κ
n
k σ

k
0 ⊗σ

n
k ,

where σ
j

i = (vi, . . . ,v j), ⊗ is the tensor product over R, and

κ
n
k = (−1)0 · · ·(−1)k−1 · (−1)k+1 · · ·(−1)n = (−1)n(n+1)/2−k.

This formula is extended to arbitrary chains by linearity.
A formula for the cup product of two cubical cochains is more complicated. We follow

the idea and the notation from Serre (1951, p. 441), where a formula was provided for
the multiplication of cubical cochains in the context of singular cubical cohomology. If
c ∈Ck(K) and c′ ∈Cl(K) are cubical cochains then their cup product is a cubical cochain
c ^ c′ ∈Ck+l(K) defined on each generator σ of Ck+l corresponding to a single cube (also
denoted by σ ) as follows:

(c ^ c′)(σ) := ∑
J⊂{1,...,k+l}, cardJ=k

ρJ,J′ c(λ
0
J′σ) · c′(λ 1

J σ), (1)
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where J′ = {1, . . . ,k+ l}\J, and ρJ,J′ = (−1)ν , where ν is the number of pairs (i, j)∈ J×J′

such that j < i. The Alexander-Whitney coproduct of a cube σ ∈Cn(K) is then given by

AW(σ) = ∑
J⊂{1,...,n}

ρJ,J′(λ
0
J′σ ⊗λ

1
J σ).

Let ( f ,g,φ ,M∗,d) be an AM model of a cell complex K, or an AT model of K if d =
0. Then the cup product of two cochains c : Mi → R and c′ : M j → R is a cochain c ^
c′ : Mi+ j→ R given by the following formula:

(c ^ c′)(σi+ j) = (µ ◦ (c⊗ c′)◦ ( f ⊗ f )◦AW◦g)(σi+ j),

where σi+ j ∈ Mi+ j, µ : R× R → R is the multiplication in R, and ⊗ denotes the tensor
product of homomorphisms defined as follows: (h1⊗h2)(x1⊗ x2) = h1(x1)⊗h2(x2).

An equivalent recursive formula for the cubical cup product (1) was also derived by
Kaczynski et al (2010) (see also Kaczynski and Mrozek 2012) in an explicit way in the
context of cubical sets as in Kaczynski et al (2004), with Munkres (1984) as a theoretical
basis. The key idea of that construction was to see the cup product in cohomology as a map
induced by the composition of two chain maps (see Hatcher (2002, Chapter 3) and Massey
(1991, Chapter XIII, §3)):

Ck(K)⊗Cl(K)→Ck+l(K×K)→Ck+l(K),

where the first map is the cross product of cochains, defined on the chains corresponding
to elementary cubes Qk

1×Ql
2 ⊂ Rk+l by the formula (ck

1× cl
2)(Q

k
1×Ql

2) = ck
1(Q

k
1) · cl

2(Q
l
2),

and the second map is induced by the diagonal map K 3 x 7→ ∆(x) = (x,x) ∈ K×K. (The
majority of Kaczynski et al (2010) is devoted to determining the chain map corresponding
to ∆ .)

This formula can also be derived by means of simplicial subdivision, using the notion of
simplicial sets (May 1967). A simplicial set is a graded set X = {Xk}k≥0 endowed with two
kinds of operators: face operators ∂ X

i : Xk→ Xk−1 (for i = 1, . . . ,k), and degeneracy opera-
tors sX

i : Xk→ Xk+1 (for i = 0, . . . ,k); see May (1967) for the conditions that these operators
must satisfy. Elements of X are called simplices. In case of “classical” simplices, these two
operators are given by the following formulas: ∂ X

i (v0, . . . ,vk) = (v0, . . . ,vi−1,vi+1, . . . ,vk),
and sX

i (v0, . . . ,vk) = (v0, . . . ,vi−1,vi,vi,vi+1, . . . ,vk). A simplex x ∈ X is called degenerate if
x = sX

i (y) for some i and some y ∈ X . The graded module generated by the degenerate sim-
plices of X is denoted by s(C∗(X)). The normalized chain complex CN

∗ (X) is the quotient
CN
∗ (X) = (C∗(X)/s(C∗(X)),∂ ), where ∂ = Σ(−1)i∂ X

i . Cartesian product S×T of two sim-
plicial sets is also a simplicial set with (S×T )k = {(x,y) : x ∈ Sk, y∈ Tk}, the face operators
∂

S×T
i (x,y) = (∂ S

i (x),∂
T
i (y)), and the degeneracy operators sS×T

i (x,y) = (sS
i (x),s

T
i (y)).

An interval I = [a,b] can be obviously considered a simplicial set SI = {SI
k}k≥0. An

elementary cube σ = I1 × ·· · × In in Rn, where I j = [a0
j ,a

1
j ] (possibly a0

j = a1
j ), is the

Cartesian product of the intervals, each of which can also be considered a simplicial set.
Therefore, the cube σ can be considered both as the simplicial set Ks and a cubical set
Kc. The cubical chain complex C∗(Kc) is isomorphic to the tensor product

⊗
j C

N
∗ (I j). The

homological equivalence of the chain complexes CN
∗ (K

s) and C∗(Kc) is given by the chain
contraction cez = ( fez,gez,φez) from the chain complex CN

∗ (K
s) of the Cartesian product

of I j to the tensor product C∗(Kc). In classical algebraic topology, the chain contraction
cez is called an Eilenberg-Zilber chain contraction, and an explicit formulation is given by
Real (2000, p. 56) (see also Eilenberg and Zilber 1953). The Alexander-Whitney coproduct
AW: CN

∗ (X)→CN
∗ (X)⊗CN

∗ (X) is defined on a simplicial set by AW(x)= ∂ X
0 ∂ X

1 . . .∂ X
i−1(x)⊗
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∂ X
i+1 . . .∂

X
n (x). The chain contraction cez can be used to transfer the simplicial Alexander-

Whitney coproduct to the cubical context:

AWc = ( fez⊗ fez)◦AWs ◦gez.

The Alexander-Whitney coproduct can then be translated to cup product at cochain level by
duality:

(c ^ c′)(σi+ j) = (µ ◦ (c⊗ c′)◦AWc)(σi+ j),

where c and c′ are cubical cochains of degree i and j, respectively, σi+ j is a cubical chain of
degree i+ j, and µ : R×R→ R is the multiplication in R.

Instead of delving into further technical details, we shall describe this construction in
the case of a 2-dimensional cube. The cubical set Kc = {Kc

0 ,K
c
1 ,K

c
2} corresponding to the

2-dimensional elementary cube σ = [a,b]× [c,d] is given by

Kc
0 = {(a,c), (a,d), (b,c), (b,d)},

Kc
1 = {[a,b]×{c}, [a,b]×{d}, {a}× [c,d], {b}× [c,d]},

Kc
2 = {[a,b]× [c,d]}.

The simplicial set Ks = {Ks
0,K

s
1,K

s
2} has the following non-degenerate cells:

Ks
0 = {(a,c), (a,d), (b,c), (b,d)},

Ks
1 = {(aa,cd), (ab,cc), (ab,cd), (ab,dd), (bb,cd)},

Ks
2 = {(abb,ccd), (aab,cdd)}.

The chain homotopy operator φez : CN
∗ (K

s)→ CN
∗+1(K

s) helps get rid of the diagonal cell,
and is defined as follows: φez(x) = −(aab,cdd) if x = (ab,cd) and φez(x) = 0 otherwise.
The Alexander-Whitney coproduct of a 2-dimensional simplex is given by

AWs(w1,w2,w3) =−(w1)⊗ (w1,w2,w3)+(w1,w2)⊗ (w2,w3)− (w1,w2,w3)⊗ (w3).

Using cez, we obtain the following:

AWc([a,b]× [c,d]) = ({a}×{c})⊗ ([a,b]× [c,d])+([a,b]×{c})⊗ ({b}× [c,d])+

− ({a}× [c,d])⊗ ([a,b]×{d})+([a,b]× [c,d])⊗ ({b}×{d})

We remark that the ring structure introduced by the cup product allows to distinguish
some topological spaces which have isomorphic cohomology but different homotopy type.
We discuss a few such examples in Section 6. However, the problem of verification whether
two rings are isomorphic or not, by means of checking their multiplication tables, is in gen-
eral a nontrivial one. Therefore, from the practical point of view it is much more efficient
to use another invariant which can be derived from the cup product, for example, the ho-
mology of the so-called reduced bar construction, which is a classical algebraic invariant in
algebraic topology. Since the details are beyond the scope of this paper, we refer the inter-
ested readers to Hurado et al (2002); Álvarez et al (2000, 2006). A version of the invariant
called HB1 specific for 3D digital images and derived from this construction was introduced
by González-Dı́az and Real (2005b).
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5 Additional constructions and variants

Small modifications in the computational machinery introduced above allow for easy imple-
mentation of additional useful features, which we discuss in this section. All these features
are implemented in the software provided at the project’s website (Pilarczyk 2013).

Relative (co)homology. If K is a cellular complex and L is its subcomplex (that is, a
subset of cells which is a complex itself) then relative (co)homology of the pair (K,L) is
the (co)homology of the quotient chain complex C(K)/C(L). From the algorithmic point of
view, relative (co)homology can be computed as plain (co)homology of the cellular complex
K \L, in which the cells in L are removed from the boundary of each cell c ∈ K \L.

Reduced (co)homology. If we additionally consider the empty cell e as a valid cell of di-
mension −1, and we put ∂0(σ) := e for every 0-dimensional cell σ , then we obtain the aug-
mented chain complex with C−1 = R, and its (co)homology is called reduced (co)homology.
The nice feature of this variant is that the geometric interpretation of reduced homology is
more consistent. While the dimension of each homology vector space over a field can be
interpreted as the number of “holes” in all dimensions except 0, where it corresponds to
the number of connected components of the space, the same interpretation is valid for re-
duced homology also at level 0, where 0-dimensional “holes” can be interpreted as “gaps”
between the connected components. As a consequence, the reduced (co)homology of a “triv-
ial” space, that is, a topological space that is contractible, is zero.

Periodic boundary conditions. In various applications, one often imposes periodic
boundary conditions in certain directions of a Euclidean space, which corresponds to taking
some coordinates from the quotient space R/kZ ' S1, where k ∈ Z, k > 0. A modification
of the definition of cubes and cubical sets for such a space is straightforward, and helps
defining certain topological spaces much more easily. For instance, the torus can be viewed
as the cubical set [0,k]× [0, l] in the space (R/kZ)×(R/lZ), where k, l are arbitrary positive
integers.

6 Software and examples

A prototype implementation of Algorithms 1 and 2 together with some illustrative examples
are provided at the project’s website (Pilarczyk 2013).

The core part of the software is a C++ programming library that defines templates for
Algorithms 1 and 2, as well as related data structures and algorithms. The type of cells and
the type of coefficients are parameters of the templates, and the algorithms are designed in
such a way that they apply to arbitrary types which satisfy the necessary mathematical as-
sumptions. The auxiliary data structures include filtered complexes, chains, linear maps, and
tensor products of chains. A special combinatorial version is provided for Z2 coefficients;
its advantage is that chains correspond to collections of cells, without the need for storing
the coefficients. Definitions of cubical cells and simplices are included as sample types of
cells, and the rings Z and Zp (where p is a prime number) are also implemented, but other
types of cells or rings of coefficients can be also easily added by the users.

In order to simplify using the software, several utility programs are included in the
package, which read input data from text files and output the results to the screen in human-
readable format. These programs are interfaces to the main features of the C++ software
library, and are provided in order to make it easy to try this software; however, using the
C++ library interface directly is recommended for intensive applications, as it is much more
efficient.
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Fig. 4 Three 2-dimensional compact manifolds with the same (co)homology groups over Z2 but distinguish-
able using Alexander-Whitney coproduct in homology (see Table 1) or the cup product in cohomology. From
left to right: the torus, the wedge of the sphere and two circles, and the Klein bottle.

(A) (B)

Fig. 5 Cubical approximations of two different configurations of three tori, available in the Voxelo
software package, http://munkres.us.es:8080/groups/catam/wiki/e33d2/ (called Toro A and Toro B). The
(co)homology groups of both topological spaces are the same, but the Alexander-Whitney coproduct in ho-
mology or the cup product in cohomology can distinguish them (see Table 1).

topological homology groups Alexander-Whitney coproduct of 2D homology generators,
space example over Z2 restricted to 1-dimensional chains
torus (Z2,Z2⊕Z2,Z2) AW(c1) = b1⊗b2 +b2⊗b1
S2 ∧S1 ∧S1 (Z2,Z2⊕Z2,Z2) AW(c1) = 0
Klein bottle (Z2,Z2⊕Z2,Z2) AW(c1) = b1⊗b2 +b2⊗b1 +b2⊗b2
projective plane (Z2,Z2,Z2) AW(c1) = b1⊗b1
S2 ∧S1 (Z2,Z2,Z2) AW(c1) = 0
three tori (A) (Z2,Z4

2,Z3
2) AW(c1) = b3⊗b4 +b4⊗b3

AW(c2) = b3⊗b4 +b4⊗b3 +b1⊗b2 +b2⊗b1
AW(c3) = b3⊗b4 +b4⊗b3

three tori (B) (Z2,Z4
2,Z3

2) AW(c1) = b2⊗b3 +b3⊗b2 +b3⊗b4 +b4⊗b3
AW(c2) = b1⊗b3 +b3⊗b1 +b2⊗b3 +b3⊗b2
AW(c3) = b3⊗b4 +b4⊗b3

Table 1 Results of computations for selected examples: the torus, the wedge of the sphere and two circles,
the Klein bottle, see Figure 4 (note that these three objects have isomorphic homology over Z2, but the
Alexander-Whitney coproduct allows to distinguish them); the real projective plane, the wedge of the sphere
and the circle (again, the same homology, but different Alexander-Whitney coproduct), and two combinations
of three tori embedded in R3 illustrated in Figure 5 that can be distinguished by the Alexander-Whitney
coproduct.

The examples include the well known Klein bottle defined as a simplicial complex, as
a surface built of 2-dimensional cubical cells (squares) embedded in R4, and also as a full
cubical set in R4. There is also the torus and the wedge of a sphere with two circles (see
Figure 4). Note that these three spaces have the same (co)homology groups over Z2, but
can be distinguished with the Alexander-Whitney coproduct (see Table 1) or with the cup
product. Another example consists of two different configurations of three tori (see Fig-
ure 5) discussed by Berciano et al (2009) (note the wrong result for the Alexander-Whitney

http://munkres.us.es:8080/groups/catam/wiki/e33d2/
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coproduct provided there), which also cannot be distinguished by computing (co)homology
alone. Results of computations for these and two more examples are gathered in Table 1.
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González-Dı́az R, Real P (2003) Computation of cohomology operations on finite simplicial complexes.
Homology, Homotopy and Applications 5(2):83–93
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