
PARALLELIZATION METHOD

FOR A CONTINUOUS PROPERTY

PAWE L PILARCZYK

Abstract. An automated method of general purpose is introduced for com-
puting a rigorous estimate of a bounded region in Rn whose points satisfy a

given property. The method is based on calculations conducted in interval

arithmetic and the constructed approximation is built of rectangular boxes of
variable sizes. An efficient strategy is proposed, which makes use of parallel

computations on multiple machines and refines the estimate gradually. It is

proved that under certain assumptions the result of computations converges
to the exact result as the precision of calculations increases. Time complexity

of the algorithm is analyzed, and the effectiveness of this approach is illus-

trated by constructing a lower bound of the set of parameters for which an
overcompensatory nonlinear Leslie population model exhibits more than one

attractor, which is of interest from the biological point of view. This paper is

accompanied by efficient and flexible software written in C++ whose source
code is freely available at http://www.pawelpilarczyk.com/parallel/.

1. Introduction

In various applications of numerical computations, an estimate of a region in Rn

of points which satisfy certain properties is often of interest. For example, finding
a set of parameters of a dynamical system for which certain dynamical features can
be observed is of great importance from the point of view of applications (see [1]
for a nontrivial example). However, efficient computation of a good approximation
of such a region is in general a difficult task.

With the use of interval arithmetic [9] and rigorous computational methods,
one can numerically verify certain properties for entire intervals instead of single
numbers. This makes it possible to process all the points contained in a rectangular
box in Rn simultaneously, by substituting the edges of the box into formulas in place
of coordinates of the points. In this way, one can obtain a result valid for all the
points in the box, computed at one fell swoop.

A straightforward approach based on interval arithmetic for computing a rigorous
estimate for a set A of points in some bounded rectangular set R ⊂ Rn which satisfy
a given property (predicate) P would be to subdivide the region R uniformly into
a family of (small) boxes, and to verify the property P numerically for each box
(see [2] for an example of using this strategy). Then one would take these boxes
for which the verification was successful as an estimate for the set A. However,
determining the right size of the subdivision of R into boxes (also called grid)

2000 Mathematics Subject Classification. Primary: 65D99; Secondary: 68W10, 65G40.
Key words and phrases. rigorous numerics, parallel computing, heuristics, algorithm, iterative

method, interval arithmetic.
Communicated by Richard Scwartz.

P. Pilarczyk was partially supported by the JSPS Postdoctoral Fellowship No. P06039 and by
Grant-in-Aid for Scientific Research (No. 1806039), Ministry of Education, Science, Technology,

Culture and Sports, Japan.

The final version of this preprint has been published in Foundations of Computational Math-
ematics, Vol. 10, No. 1, 2010, pp. 93–114, DOI: 10.1007/s10208-009-9050-8, and is available at

www.springerlink.com.

1

http://www.pawelpilarczyk.com/parallel/
http://dx.doi.org/10.1007/s10208-009-9050-8
http://www.springerlink.com/


2 PAWE L PILARCZYK

is often a matter of a good guess. If the grid is too coarse, then not only the
obtained approximation of A is rough, but also the computations for these boxes
can easily fail (because of overestimates) instead of revealing the delicate properties
that might only be detected if smaller boxes are taken. On the other hand, too fine
a grid induces the need for running an excessive amount of computations necessary
to process all the boxes in the entire range R, many of which are outside A. In
contrast to processing full boxes, conducting the computations for single points
(e.g., corners of the boxes), yields the most precise computations, because there are
no overestimates introduced by the positive size of intervals. However, in this way
one cannot obtain rigorous results for the entire boxes.

Taking the above-mentioned arguments into consideration, we combine the power
of computations for single points (further called probes) and the ultimate goal of
completing the computations for entire boxes into an algorithm which constructs
a rigorous approximation of the region of interest built of boxes of various sizes.
The algorithm first creates a rough approximation of the region with respect to
some fixed grid, and then refines the result by subdividing the boxes for which it
was not possible to prove the given property but chances for success are reasonably
high, which is determined by testing probes at the corners of boxes of interest.
The details of this algorithm are provided in Section 4. Time complexity analysis
conducted in Section 5 reveals the superiority of our method in comparison with
the “naive” approach based on subdividing R into boxes with respect to a fixed
grid.

Although this method can be applied to obtain a rigorous lower bound for the
set A of points satisfying an arbitrary property P that is computationally verifiable,
it yields good results if P is in some sense “continuous”, that is, if it has a feature
in the following spirit: If P is satisfied for some point then it is also satisfied for
all the points in its vicinity. This translates to the shape of A, which cannot be
too complicated, e.g., it could be either convex with nonempty interior, or at least
every point in A should be close to some relatively large box contained in A. A
sample definition of this notion is given in Section 6 for the purpose of proving
the convergence of this method, but it is the intuitive meaning explained above
which is important if one considers using our method for a specific application. In
particular, this method seems to be inappropriate if one expects that A might be
a fractal or if it is likely that the interior of A might be empty.

Since the computations for each box in Rn may be time-consuming, which is
especially the case if a region of parameters is computed for which some complicated
property is satisfied, it is a good idea to spread the computations over several
machines. A model of parallel computations that seems to be most suitable for
this application is introduced in Section 3. It is a centralized scheme in which the
main process is responsible for determining small rectangular regions in Rn that
are to be analyzed, and the other processes do the verification for these regions.
The task of the main process is also to interpret the results of this verification
and incorporate these results into the computed area. To make good use of the
power of parallel computations, the algorithm must be constructed in such a way
that multiple probes and boxes can be sent for analysis simultaneously. Moreover,
the fact that the results of computations for these probes and boxes can arrive
in an unpredictable order must also be taken into consideration. These issues are
addressed in the algorithm proposed in Section 4.

Although the method introduced in this paper may seem at first glance to be
based on some heuristic techniques and intuitive observations, it works very well in
practice, and we prove that it is mathematically sound. In particular, in Section 5
we conduct its time complexity analysis, and in Section 6 we prove its convergence.



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 3

We show that under certain assumptions on the property which is to be verified and
on the computational method used to verify it, the increase in numerical accuracy
and in the depth of computations results in a better approximation of the computed
region in terms of the Hausdorff distance between the constructed set and the actual
region of interest.

In order to show the power of this method, in Section 7 we analyze a specific ex-
ample of a dynamical system that describes a certain biological model. We compute
a rigorous lower bound for the region in the parameter space for which it is possible
to prove the existence of at least two disjoint attraction basins. This feature is of
great importance for the modeled ecosystem, as we explain in Section 7.

The source code of a software implementation of the method introduced in this
paper, including the analyzed examples, is freely available for download at [10]
under the terms of the GNU General Public License. The C++ programming lan-
guage was chosen for this implementation, mainly because it is a widely acclaimed
standard with the excellent GNU C++ compiler and many specialized software
libraries, including interval arithmetic packages, freely available for virtually any
computer architecture. Another argument in favor of using the C++ language
is that well-written code in C++ is often much faster than software prepared in
other programming languages, although the latter might have various advantages
over C++, like being more flexible or more mathematically-oriented. Moreover,
the strategy of using C++ for academic computations also eliminates the need for
using specialized mathematical software, rarely available without prohibitively high
license fees.

2. Preliminaries

In this section some notation and definitions are introduced, which are going to
be used in this presentation.

Let R ⊂ R denote an a priori chosen finite set of rational numbers, further called
representable numbers, that can be encoded in the computer using a specific rep-
resentation, which will remain fixed throughout the paper. The only assumption
which we make about this representation is that a certain number of powers of 2
are representable, and also that the division of representable numbers which are
not too small in absolute value by a limited number of positive powers of 2 results
in numbers which are also representable. These assumptions are necessary for the
subdivision framework defined in Section 4, and in Section 6 where the convergence
of the method is analyzed. In practice, we consider the 64-bit representation of
numbers introduced in the IEEE 754 standard, for which these assumptions are
satisfied. The fact that this standard is followed by many manufacturers of proces-
sors (e.g., Intel, AMD, Sparc) makes this representation easy to use in applications.
However, other representations can also be used, especially if higher precision of
computations is required.

A closed interval I = [x1, x2] is called representable if x1, x2 ∈ R. If x1 = x2

then the interval I = [x1, x2] = {x1} is called degenerate. The set of all closed
representable intervals (including the degenerate ones) will be further denoted by I.
A set Q ⊂ Rn is called a representable rectangular set if it is the product of some
closed representable intervals: Q = I1 × · · · × In for I1, . . . , In ∈ I. It is called
degenerate if at least one of the intervals I1, . . . , In in the product is degenerate.
The size of Q is defined as max

{
|I1|, . . . , |In|

}
, where |Ii| denotes the length of the

interval Ii for i = 1, . . . , n. The set of all representable rectangular sets contained
in some R ⊂ Rn is denoted by B(R). A set A ⊂ Rn is called representable if it is
a (finite) union of some representable rectangular sets. Note that since R is finite,



4 PAWE L PILARCZYK

so are the sets I and B(R) for any R ⊂ Rn. A representable set A ⊂ Rn is called
a lower estimate for another set B ⊂ Rn if A ⊂ B.

Any function P : X → {0, 1} is called a property on X. We say that the property
P is satisfied for a point x ∈ X if and only if P (x) = 1. The set {x ∈ X : P (x) = 1}
is called the support of P . Given a bounded set R ⊂ Rn and a property P on R,
we say that a property P on B(R) is a lower estimate for P if for every Q ∈ B(R)
such that P is satisfied for Q, the property P is satisfied for every x ∈ Q.

A computable lower estimate P for P can be used to confirm that P is satisfied
for all x ∈ Q for a specific Q ∈ B(R), if P is satisfied for Q. However, if P is not
satisfied for Q then this provides no conclusion as to whether P is satisfied or not
for the points in Q. In this way, one can use P to find explicitly a possibly large
subset of R on which the property P is satisfied; this can be instantly achieved by
simply taking the union of all Q ∈ B(R) such that P(Q) = 1. However, since the
number of elements of B(R) is typically huge, this approach is useless in practice.
A much more efficient algorithm for this purpose is introduced in Section 4.

The method described in this paper assumes that a computable lower estimate P
for P on R is monotonic, that is, if P is satisfied for some Q ∈ B(R), then P is also
satisfied for every Q′ ∈ B(R) such that Q′ ⊂ Q. This assumption is very natural if
P is defined as the output of some computational method for verifying P with the
use of interval arithmetic, because smaller intervals in the input of the procedure
for P generate smaller overestimates in the calculations aimed at confirming the
property P .

3. Parallel computations framework

In this section we introduce a simple and reliable framework for centrally con-
trolled parallel computations, which is suitable for the algorithm discussed in Sec-
tion 4.

A task or program running on a single computer is called a process. In this
framework, one of the processes is designed to control the computations and is
called the coordinator. All the other processes which take part in the computations
are called workers.

The computations are initialized by starting the coordinator process. In the
software accompanying this paper, the coordinator reads the log of previously com-
pleted computations, so that it can resume the work that was interrupted, if any.
This is a very useful feature in practice, but in general this step is optional. If no
previous log is found then the computations are started from scratch. Then worker
processes are launched (possibly at different machines). Each of them opens a
network connection with the coordinator to join the computations and acquire ini-
tialization data, if any.

Figure 1. A simple framework for centrally controlled parallel computations.

During the computations, the coordinator prepares portions of data to be pro-
cessed by workers. The coordinator should be able to prepare multiple portions
of data before acquiring all the results of processing previously sent data, so that
all the workers which take part in the computations can be kept busy. Once a



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 5

worker completes processing its portion of data, it sends the computed result to
the coordinator over the network connection, and acquires another portion of data
(see Figure 1).

For the purpose of the simplicity of usage, in the implementation of this model
available in [10], the coordinator and the worker are programmed as separate classes
in C++, and the network communication is hidden from the end user of the soft-
ware. The only procedures that need to be programmed are the functions Accept

and Prepare of the coordinator, and the functions Initialize and Process of
the worker. The function Accept is called when a result of computations has been
acquired from a worker and must be incorporated into the set of all the results of
computations. The function Prepare is called each time a portion of data needs
to be prepared for an idle worker. This function should return a data portion for
processing or indicate that there is no more data that needs to be sent at the cur-
rent state of the computations (which can change if new data is acquired from some
worker). The function Initialize is called if initialization data is obtained from
the coordinator after the worker process has joined the computations. The function
Process is called when a piece of data acquired from the function Prepare and sent
over the network must be processed by a worker. This function returns a portion
of data which is then transmitted back to the coordinator.

New workers can connect to the coordinator not necessarily at the beginning of
the computations, but also at a later time. This feature is useful if one initially runs
the computations on a small number of processors, and at some point one decides
to speed them up by using more resources, or if a group of additional processes are
started at a computer cluster.

Moreover, if it happens that some worker process dies (e.g., by meeting the as-
signed wall time when running at a computer cluster) or its network connection
with the coordinator is suddenly broken, then the data which was sent to the un-
fortunate worker is immediately sent to another worker, as soon as one becomes
ready. Note that in this scheme no data is lost if a worker is dropped, in contrast
to what typically happens in distributed computation solutions. Even better, re-
sending the data is transparent, so this case need not be considered separately in
algorithms that use this scheme.

Additionally, it is also possible that the coordinating process itself does the
computations dedicated for workers if none is connected.

To sum up, the number of active workers can easily change during the computa-
tions without causing any data loss, unlike in typical parallel computing solutions.
This feature is very useful in practice, and may save a considerable amount of time
when running extensive computations, mainly because it eliminates the need of
restarting the entire job in case of failure of some processes taking part in the com-
putations, or if the number of computers assigned to the task needs to be changed.

A software implementation of the parallel computations scheme described in
this section is included in the software package [10]. A notable feature of this
implementation is its architecture independence, which allows to run computations
in a heterogeneous environment, using various types of machines simultaneously
(like PCs, MACs, or SUNs), possibly running different operating systems (e.g.,
Windows, Linux, MacOS X, or Solaris). Detailed instructions for the usage of this
software, together with some examples that clarify various aspects of this scheme
and specific features of the software, are also included in [10].

4. The subdivision algorithm

Let R be a representable rectangular set in Rn and let P be a property on R. We
are interested in estimating the support of P , that is, the set A of all the points in



6 PAWE L PILARCZYK

R satisfying the property P . Assume that some lower estimate P for P is available,
which provides an automatic method for verifying if the property P is satisfied on
representable rectangular sets Q ⊂ R in the following way: If it is computed that
P(Q) = 1 then P (x) = 1 for all x ∈ Q, and thus Q ⊂ A, but the result P(Q) = 0
is inconclusive.

In this section we use the parallelization framework defined in Section 3 to intro-
duce an algorithm for computing a rigorous lower estimate A≈ of the support A of
P using the computable property P. Before providing the details of the algorithm,
we would like to remark that this method can also be used to compute a rigorous
upper estimate of the set B := R \ A on which the negation of the property P is
satisfied, by taking the complement of the computed set A≈ with respect to the
entire region R.

4.1. Representable subdivisions. We begin with introducing the terminology
for describing representable subdivisions of the representable rectangular set R.
Given a representable interval I = (a, b) and an integer q > 0, we say that a set S
of subintervals of I is called a subdivision of I of order q if S consists of 2q non-
degenerate representable intervals with disjoint interiors, whose union equals I.
The set of endpoints of these intervals is called the corresponding set of subdivision
points. For a representable rectangular set R = I1 × · · · × In ⊂ Rn, a subdivision
of R of order q is any set S :=

{
J1 × · · · × Jn : Jj ∈ Sj for all j = 1, . . . , n

}
of 2qn

representable rectangular subsets of R, where each Sj is some subdivision of Ij of
order q. The set of all the corners of these sets is called the corresponding set of
subdivision points.

Let Sq(R) denote the subdivision of R = I1 × · · · × In of order q generated
by the subdivision of each Ij = (aj , bj) in which the subdivision points x(i, j, q),
for i = 0, . . . , 2q and j = 1, . . . , n, are computed by rounding the result of each
arithmetic operation in the formula

(1) aj + (bj − aj)(i/2q)

to the nearest representable number, or Sq(R) := ∅ if x(i1, j1, q) = x(i2, j2, q) for
some (i1, j1) 6= (i2, j2), which can happen because of rounding to representable
numbers. Denote the corresponding set of subdivision points by Eq(R), or define
Eq(R) := ∅ if Sq(R) = ∅. Whenever the set R is clear from the context, we will
omit this argument and write Sq or Eq for short. If q, r > 0 and all the numbers
i/2q, i/2q+r are representable (which is usually true for binary representations of
real numbers if the number q+ r is not too large, as discussed in the Introduction),
then it is obvious that for any S ∈ Sq(R) the set {Q ∈ Sq+r(R) : Q ⊂ S} is a
subdivision of S of order r, provided that Sq+r(R) 6= ∅. This feature will be used
in our algorithm.

4.2. Processing rectangular sets. Since we are going to use the parallel com-
putations framework defined in Section 3, in order to provide an algorithm for our
method, we need to define the following three functions called within that frame-
work: Process for computing the property P on any representable rectangular set
Q ⊂ R, Prepare for determining which box Q to send for processing, and Accept

for integrating the result of the computation of P(Q) for a previously sent box Q
into the approximation of A being constructed. Although the function Initialize

is empty in this algorithm, in the applications it can set some configuration options
for the computation of the function P. The implementation of the first of these
functions depends on the actual property P and a numerical lower estimate P used
to verify it, and can be summarized as follows.

Algorithm 1 (the function Process).



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 7

input: Q ∈ B(R), q > 0;
output: 0 or 1;
code:

return
(
Q, q,P(Q)

)
;

The number q > 0 in the input corresponds to the subdivision order, and the
input data is returned together with the computed valued of P(Q) in order to
enable its identification in Algorithm 3.

4.3. Preparing data for processing. Since both functions Prepare and Accept

are run by the same process (the coordinator) and their actions in some sense
complement each other, it is natural that they must share several variables. In
particular, several finite lists of representable rectangular sets under analysis are
stored in the variables listed below. The elements of Sq(R) are called boxes, and the
elements of Eq(R) are called probes. Words justifying the symbol used are indicated
in italics.

A — boxes for which it has been successfully verified that they are contained
in A by computing P(Q) = 1;

F — boxes for which the above computation failed, that is, P(Q) = 0 was com-
puted;

W — boxes waiting for the above verification for which the value P(Q) is yet
unknown, but it is likely to be 1;

G — good probes, that is, probes for which P(Q) = 1 has been determined;
N — negative probes, that is, probes for which P(Q) = 0 has been computed;
T — probes which are waiting for testing;
C — boxes and probes currently being processed (by some worker).

Each of these sets is actually stored in the algorithms as a series of sets indexed by
the subdivision level denoted as a subscript, e.g., Aq ⊂ Sq(R) and Nq ⊂ Eq(R). All
these sets are initially empty, except where initialized otherwise.

The function for preparing data to send to a worker is quite straightforward. It
tries to find a probe or a box which waits for processing, and which belongs to the
set Tq or Wq with the lowest possible index q, with priority given to probes. It
returns ∅ if no more data needs processing at the current stage of computations.

Algorithm 2 (the function Prepare).
input: none;
output: either ∅ or a pair (Q, q) with Q ∈ Sq(R) ∪ Eq(R);
code:

qT := inf{q > 0 : Tq \ Cq 6= ∅};
qW := inf{q > 0 :Wq \ Cq 6= ∅};
if qT <∞ and qT ≤ qW then

q := qT ; Q := any element of Tq \ Cq;
else if qW <∞ then

q := qW ; Q := any element of Wq \ Cq;
else return ∅;
Cq := Cq ∪ {Q};
return (Q, q);

4.4. Acquiring processed data. The function which acquires data processed by
workers is more complicated. The general idea is to make sure that probes are
tested first. If this verification fails then the probe is abandoned together with the
area around it. If it succeeds, however, then all the boxes which have the probe at
one of their corners are enqueued for further testing, provided that they are not yet
contained in A≈. If the verification for some box fails then the box is subdivided



8 PAWE L PILARCZYK

and smaller boxes around good probes located at its corners are tested next. If it
succeeds, however, then the entire box is added to A, its corners are automatically
assumed to be good probes, and all the adjacent boxes which contain these probes
are taken for subsequent verification. The details are provided in the algorithm

Figure 2. Rough idea of treating results computed for probes and
boxes in Algorithm 4.

below, and the rough idea behind treating the four cases is illustrated in Figure 2.
Some effort is undertaken to avoid checking unnecessary probes or testing boxes
for which the result is known a priori because of the assumed monotonicity of P.
Moreover, as it follows form the definition of Sq(R), if the size of a subdivided box
is so small that degenerate boxes appear then they are not analyzed any further,
because the maximal feasible resolution is considered to have been reached in that
case. Note that one may prefer to stop the subdivision process even earlier, before
some subdivision order q∞ > 0 has been reached. This can be easily done by
redefining Sq∞(R) := ∅ and Eq∞(R) := ∅, as proposed in Algorithm 4. This feature
is also included in the software implementation [10] of this algorithm, in which the
maximal allowed subdivision level q∞ must be specified explicitly.

Algorithm 3 (the function Accept).
input: Q ∈ B(R), q > 0, r ∈ {0, 1};
output: none;
code:

Cq := Cq \ {Q}; Tq := Tq \ {Q}; Wq :=Wq \ {Q};
(case 1 – a negative probe:)
if r = 0 and Q ∈ Eq(R) then

Nq := Nq ∪ {Q};
for each U ∈ Wq \ Cq such that Q ∈ U do

Accept (U , q, 0);
(case 2 – a good probe:)
else if r = 1 and Q ∈ Eq(R) and Q /∈ Gq then

Gq := Gq ∪ {Q}; Gq+1 := Gq+1 ∪ {Q};
for each U ∈ Sq+1(R) such that Q ∈ U do

if not
(
U ⊂W for some W ∈ Aq′ ∪ Fq′

with q′ ≤ q + 1
)
then

Wq+1 :=Wq+1 ∪ {U};
(case 3 – a box for which the verification failed:)
else if r = 0 and Q ∈ Sq(R) then

Fq := Fq ∪ {Q};
for each V ∈ Eq(R) such that V ∈ Q do

if V ∈ Gq and Sq+1(R) 6= ∅ then
let U ∈ Sq+1(R) such that V ∈ U ⊂ Q;
if U /∈ Aq+1 ∪ Fq+1 then



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 9

Wq+1 :=Wq+1 ∪ {U};
Gq+1 := Gq+1 ∪ {V };

if V /∈ Gq ∪Nq then
Tq := Tq ∪ {V };

(case 4 – a box which is proved to be contained in A:)
else if r = 1 and Q ∈ Sq(R) then

if not
(
Q ⊂ U for some U ∈ Aq′ with q′ ≤ q

)
then

Aq := Aq ∪ {Q};
for each q′ > q such that Wq′ 6= ∅ do

for each U ∈ Wq′ \ Cq′ such that U ⊂ Q do
Wq′ :=Wq′ \ {U};

for each V ∈ Eq(R) such that V ∈ Q do
Accept (V , q, 1);

4.5. The main algorithm. The three functions defined in the previous subsec-
tions are combined in the following algorithm which computes a rigorous lower
bound A≈ for the set A.

Algorithm 4 (the computation of A≈).
input: a representable rectangular set R; a property P on B(R);

two integers q∞ > q0 > 0;
output: a representable subset of R;
code:

set Tq0 := Eq0(R) ∩ intR;
redefine Sq∞(R) := ∅ and Eq∞(R) := ∅;
run the parallel computations framework with the procedures

Process, Prepare and Accept defined by Algorithms 1, 2
and 3, respectively, for P, R, and the initial T as above;

return A≈ :=
⋃
A;

Before we analyze the complexity of this algorithm in Section 5 and we prove its
asymptotic properties in Section 6, we would like to make an observation that this
algorithm always executes in finite time, and thus has the termination property.
This holds true because each probe and each box that appears in the algorithm is
processed at most once, and the number of those boxes and probes does not exceed
the number of elements of all the sets Eq(R) and Sq(R) for q = q0, . . . , q∞−1, which
are all finite.

We would like to end this section with a remark indicating one of the benefits
of the incremental strategy of approximations exercised in Algorithm 4. Namely, if
one decides to refine a previously computed approximation of A by increasing the
target resolution q∞ to q+

∞ > q∞ then Algorithm 4 can be re-run with the previously
computed (and stored) values of P on boxes in Sq(R) and probes in Eq(R) for
q = q0, . . . , q∞ − 1. Then the function Process called with boxes in Sq(R) and
probes in Eq(R), for q = q0, . . . , q∞ − 1, immediately returns the tabulated result
in no time, and the computations effectively start at the subdivision level q∞.
This feature has been implemented in the software [10] accompanying this paper,
and proves itself to be very efficient. Note that such an easy way of refining a
previously computed result is not available in the “naive” approach based on testing
all the cubes in Sq∞−1, in which the entire complement in R of previously obtained
approximation of A must be processed from scratch in order to achieve the same
result.



10 PAWE L PILARCZYK

5. Time complexity of the algorithm

The time complexity of an algorithm is typically measured in terms of the number
of elementary operations in the algorithm’s run as a function of the size s of the
input. The notation O

(
f(s)

)
is used to indicate the asymptotic upper bound for the

worst case in the following sense. It is said that the algorithm has the (pessimistic)
time complexity of O

(
f(s)

)
if there exist constants c, s0 > 0 such that the number

of elementary operations in the run of the algorithm on any input of size s > s0 does
not exceed cf(s). See [7, §3.1] for a more detailed explanation of this notation and
for a comprehensive introduction to the subject of time complexity of algorithms
in general.

Since the evaluation of P(Q) is usually the bottleneck in the applications targeted
at in this paper and the other combinatorial operations in Algorithm 4 are very
simple, it is natural to measure the execution time of this algorithm in terms of the
number of calls to the procedure Process. However, it is more difficult to determine
the right measurement method for the size of the input, because various factors may
play significant role in the computations. Therefore, for the sake of simplicity, let
us assume that a property P on a rectangular representable set R ⊂ Rn has been
fixed together with its lower bound P and the initial order q0 of subdivisions of R.
Then the time of running Algorithm 4 substantially depends on the number q∞
which determines at what subdivision depth the computations are stopped. As a
consequence, it seems to be most reasonable to measure the time complexity of
Algorithm 4 as a function of q∞.

In order to avoid complications in the formulation of Theorem 5 below, we will
silently assume that whenever Algorithm 4 is run with some arguments R,P, q0, q∞,
the set R is rich enough so that Sq∞−1 6= ∅. Note that this assumption also implies
that P is defined on a gradually larger set of representable boxes as q∞ is increased.
In practice, this assumption can be instantly satisfied if a software implementation
of representable numbers with adjustable precision is used and P is evaluated in
interval arithmetic using a formula for P .

Since the running time of this algorithm strongly depends on the inaccuracies
in the evaluation of P, for the purpose of obtaining realistic estimates we shall
assume that P is accurate on boxes which are small enough and not too close to
the boundary of the support A of P . We say that P is accurate below subdivision
level q1 if for all Q ∈ Sq with q > q1 one has P(Q) = 1 if Q ⊂ A and all the
neighbors of Q in Sq are also contained in A. In particular, we have P(Q) = 1 for
every probe Q ∈ intA.

Note that since the number of boxes considered at subsequent subdivision lev-
els grows exponentially, an exponential complexity with respect to q∞ should be
expected. We prove the following

Theorem 5. Let P be a property on a representable rectangular set R ⊂ Rn whose
support A is convex. Let P be a lower bound for P on R which is accurate below
some subdivision level q1. Let q0 > 0. Then the pessimistic time complexity of
Algorithm 4 called with R, P, q0 and q∞, measured in terms of the number of calls
to Process as a function of q∞, is O(2(n−1)q∞).

Proof. Let us estimate the number of processed probes and boxes in the run of Al-
gorithm 4. Initially, almost 2q0n probes are tested. At each subsequent subdivision
level q = q0 + 1, . . . , q1, no more than 2qn boxes are tested, and at most that many
probes as well. This totals to at most

C0 := 2q0n + 2

q1∑
q=q0+1

2qn ≤ 2(q1+1)n+1



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 11

calls to the procedure Process.
Denote by Gq the convex hull of Gq for q ≥ q1. Note that Gq ⊂ A because A

is convex. Since P is accurate below subdivision level q1, the procedure Process

will succeed on every Q ∈ Wq1+1 contained in Gq1 whose all neighbors are also
contained in A. There are at most

C1 := 2(q1+1)n

such boxes. Their sub-boxes as well as probes contained in them are not tested
anymore.

Now consider q > q1 + 1. Since all the boxes in Sq−1 that are contained in
Gq−1 together with all their neighbors are already proven to be contained in A,
the only probes in Eq and boxes in Sq which need to be tested are located along
the boundary of Gq−1. Since Gq−1 is convex and contained in R, a rough upper
estimate for the number of those probes and boxes can be obtained by the maximal
(n−1)-dimensional “area” of the belt along the boundary of Gq−1, measured by the

means of boxes in Sq (2n · 2(n−1)q), times the number of possible neighbors of each
probe (2n), times the number of box layers that the boundary of Gq−1 can intersect
(2) plus one extra layer to include those boxes that have a neighbor sticking out
of A (+1). This gives a total of (2 + 1) · 2n · 2(n−1)q · 2n probes and boxes that
can be potentially tested at the subdivision level q. Taking into consideration these
estimates for q = q1 + 2, . . . , q∞ − 1, we obtain the following upper bound on the
number of calls to the function Process:

6n2n
q∞−1∑
q=q1+2

2(n−1)q ≤ 6n2n2(n−1)q∞ = C22(n−1)q∞ ,

where C2 is a constant independent of q∞. After having joined this result with the
previous estimates, we obtain an upper bound on the number of calls to Process

in the entire run of Algorithm 4 as C0 + C1 + C22(n−1)q∞ , which is O
(
2(n−1)q∞

)
.

This completes the proof. �

We would like to point out the fact that the time complexity of Algorithm 4 is
substantially better than that of the brute force approach based on scanning all the
boxes in Sq∞−1. The complexity of the latter is O

(
2nq∞

)
, which is also exponential

with respect to q∞, but with a twice larger base. Therefore, the gain attained by
using the strategy proposed in this paper is exponential.

6. Convergence of the method

In this section we prove that under certain assumptions Algorithm 4 introduced
in Section 4 converges, that is, the computed approximation A≈ of A can fill A
arbitrarily well as the amount of computations and their accuracy increase.

Typically, in the analysis of convergence of a numerical method it is assumed that
the calculations are done with infinite precision, and thus the impact of numerical
errors which arise in real computations is often neglected. Instead, in this paper
we conduct a substantially more realistic analysis of convergence of Algorithm 4,
which takes into account the finiteness of the set of representable numbers, and
therefore leads to conclusions which are meaningful in real applications, not only in
theory. Although this approach is somewhat more complicated than the “idealistic”
version, we are firmly convinced that it is worth the effort.

In what follows we prove that the higher the precision of calculations is applied in
terms of quality of both representable numbers R and a lower bound P for P , and
the deeper the subdivision levels q0 and q∞ are taken, the better the approximation
of the support of P is obtained. We begin with introducing some terminology and



12 PAWE L PILARCZYK

notation necessary to formulate Theorem 6 about convergence of our method, which
will then be followed by its detailed proof.

For convenience, we are going to use the “maximum” metric d in Rn throughout
this section: d(x, y) = max{|xi − yi| : i = 1, . . . , n}. To shorten the notation, any
product of n intervals I1 × · · · × In ⊂ Rn will be called a box. We will use its
diameter in the metric d to measure how large it is, and its inner size defined as
the minimum of the lengths of the intervals I1, . . . , In to know a lower bound for
how much it covers.

Given ε, κ > 0, we say that a set A ⊂ Rn is (ε, κ)-thick if for every positive
ρ ≤ ε, every point x ∈ A is within the distance of at most ρ/κ from some box
of inner size ρ contained in A. We say that a property P is continuous (with the
constants ε, κ) if its support is (ε, κ)-thick. Intuitively, a set A is thick if its every
point is close to a considerable part of its interior; in particular, A does not have
any isolated points (or small connected components), whiskers with empty interior,
or even thin cusps. Note that the pair (ε, κ) may not be determined uniquely for A,
and κ can be usually increased if ε is taken smaller. For example, the unitary disk
in the plane is (ε, κ)-thick with any ε ≤

√
2 and κ ≤

(
4 + 2

√
4− ε2

)
/ε, while a

rectangle is (ε, κ)-thick with any ε > 0 not exceeding its inner size and any κ > 0.
If A is (ε, κ)-thick for some ε > 0 and an arbitrarily large κ > 0, like in the case of
the rectangle, then we say that A is (ε,∞)-thick.

Let A denote the support of a given property P on R. Given λ, η > 0, we say
that a lower estimate P for P on R is (λ, η)-accurate if for every representable
rectangular set Q ⊂ R whose diameter is smaller than λ and whose distance from
∂A is larger than η, the property P(Q) is satisfied if and only if Q ⊂ A. Intuitively,
if the diameter of the boxes on which P is evaluated is small enough and these
boxes are far enough form the boundary of A, then the results provided by P are
meaningful not only if P(Q) = 1, but also if P(Q) = 0. Note that if P is computed
using a formula for P evaluated in interval arithmetic then it is reasonable to
expect that P is (λ, η)-accurate for some λ, η > 0. This is because the computation
of P(Q) usually has some “safety margins,” so the errors coming from overestimates
in the computation of P(Q) on small boxes (whose diameter is limited by λ) are
typically small enough to provide the accurate result if the box Q is at some distance
(bounded from below by η) from ∂A.

If I is a representable interval then the inaccuracy of R in I is defined as the
maximal distance of points in all Eq(I) for q ≥ 1 from the actual values which
follow from the formula (1). In practice, if µ1 is the maximal distance between
consecutive representable numbers in I and the relative error due to rounding the
results of arithmetic operations does not exceed µ2 then the inaccuracy µ of R
in I = [a, b] satisfies the inequality µ ≤ 2(b − a)µ2 + µ1. For a representable
rectangular set B = I1 × · · · × In ⊂ Rn, the inaccuracy of R in B is defined as the
maximum of the inaccuracies of R in each Ij for j = 1, . . . , n. Generally speaking,
this inaccuracy reflects the finiteness of the set of floating-point numbers that can
be represented using a chosen encoding method. A non-zero inaccuracy is caused by
the need to round results of arithmetic operations to nearby representable numbers.
The number µ provides an upper bound for the shift caused by rounding.

As a measurement of how well one set approximates another, we use the Haus-
dorff distance with respect to the metric d in Rn, defined for A,B ⊂ Rn as

dH(A,B) := max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

The following theorem says that given any continuous property P on R, Al-
gorithm 4 returns an arbitrarily close lower bound A≈ for A, provided that the
precision of the computations is high enough in terms of the set of representable



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 13

numbers R, a lower estimate P for P on R, and the initial (q0) as well as the final
(q∞) depth of subdivisions, all of these parameters given explicitly. In order to
simplify the reasoning, we assume that the box R is a hypercube which has the
same representable intervals for its edges.

Theorem 6. Let I ⊂ R be a representable interval of length r > 0. Let P be a
continuous property on R := In with the constants ε, κ > 0. Denote its support
by A. Let P be a lower estimate for P on R. Let A≈ denote the set returned
by Algorithm 4 applied to R, P, q0 ≥ log2(r/ε) + 2, and some q∞ > q0. Set
ε0 := 2−q0+2r. Let δ < ε0 be an arbitrarily small positive number.

If P is (λ, η)-accurate for some λ > 0 and η < δ/4, if q∞ > max{log2(r/δ) +
4, log2(1/ε0) + 4, log2(r/λ) + 2}, and if the inaccuracy µ of R in R is smaller than
min{2−q∞r, δ/(4q∞)}, then A≈ ⊂ A and dH(A,A≈) ≤ ε0/κ+ δ.

Note that if the support A of P is (ε,∞)-thick then the Hausdorff distance
between A and A≈ in this theorem is in fact bounded by δ alone, which implies
that the set A≈ gets gradually closer to A with the progress of calculations (or with
increasing q∞) started at some admissible subdivision level q0. However, if A is
not (ε,∞)-thick then the final proximity between A≈ and A also depends on the
density of the initially tested probes, indicated by q0.

Before we prove this theorem, let us make some observations about Algorithm 4
applied to R, P, q0 and q∞ under the assumptions of Theorem 6. To shorten the
notation, define Aq≈ as part of the computed approximation A≈ of A built of boxes
in all Aq′ up to the subdivision level q, that is, Aq≈ :=

⋃q
q′=q0

⋃
Aq′ . The following

lemma establishes what happens to boxes in the vicinity of good probes.

Lemma 7. If Q ∈ Gq for some q ∈ {q0, . . . , q∞ − 2} then for every box U ∈ Sq
such that Q ∈ U the following holds: Either U ⊂ Aq≈, or the box W ∈ Sq+1 such
that Q ∈ W ⊂ U is added to Wq+1 in the run of Algorithm 4. In the latter case,
Q ∈ Gq+1.

Proof. We prove this lemma by induction with respect to q. To prove the lemma
for q = q0, let us notice that the probes in Eq0 can only be added to Gq0 by the call
to Accept (Q, q0, 1) while processing the initial set of probes. Then Q is added to
Gq0+1 and all the boxes in Sq0+1 containing Q are added to Wq0+1.

Let us now proceed with the inductive step and assume that the lemma holds
true for some q ∈ {q0, . . . , q∞ − 3}. Consider a probe Q ∈ Gq+1. It was added to
Gq+1 in one of the following situations: (1) Q was accepted as a good probe in Eq
by the call to Accept (Q, q, 1); (2) a failure box in Wq containing Q was accepted
and Q ∈ Gq; (3) Q is a corner of a box V ∈ Wq+1 for which the verification was
successful.

In the first two cases, we can use the inductive assumption on Q, because Q ∈ Gq.
Consider an arbitrary box Uq+1 ∈ Sq+1 such that Q ∈ Uq+1. Let Uq be the box
in Sq such that Uq+1 ⊂ Uq. Note that Q is a corner of Uq, so by the inductive

assumption, either Uq is contained in Aq≈, and then Uq+1 ⊂ Aq+1
≈ , or Uq+1 is added

toWq+1 in the algorithm’s run. In the latter case, there are two possibilities. Either
Uq+1 ∈ Wq+1 is processed and the result is positive, in which case Uq+1 ∈ Aq+1,

and thus Uq+1 ⊂ Aq+1
≈ , or Uq+1 is determined to be a failure box in one of the

following ways: either by computing P(Uq+1) = 0, or by finding a negative probe
at one of its corners. In both of these negative cases, a call to Accept (Uq+1, q+ 1,
0) is made, and the box Uq+2 ⊂ Uq+1 which contains the good probe Q ∈ Gq+1 is
added to Wq+2, with Q being added to Gq+2 at the same time. This proves the
inductive step in the cases (1) and (2).

In the case (3), a call to Accept (Q, q + 1, 1) is made. As a result, Q is added
to both Gq+1 and Gq+2, and every box U ∈ Sq+2 which is not contained in the part



14 PAWE L PILARCZYK

of Aq+2
≈ constructed so far is added to Wq+2. This proves the inductive step in the

case (3).
Applying the induction principle completes the proof. �

The core of the proof of Theorem 6 is contained in the following lemma, in which
we prove that any point in any sufficiently large box contained in A (but not too
close to ∂A) is closely approached with points in A≈, or at least with good probes.

Lemma 8. Under the assumptions of Theorem 6, if B ⊂ A is a box of inner size
ε0/2 such that d(B, ∂A) > η and if x ∈ B, then for each q ∈ {q0, . . . , q∞− 2} there
exists xq ∈ Eq∩B such that d(xq, x) < 2−qr+2µ(q+1−q0), and either xq ∈ intAq≈,
or xq ∈ Gq ∩Gq+1 and all the boxes in Sq+1 which have xq but are not contained in
Aq≈ are added to Wq+1 in the run of Algorithm 4.

Proof. Let us prove this lemma by induction with respect to q. Consider q = q0.
Since the inaccuracy of R in R is µ and by the assumption on q0, the maximal
distance between the initially tested probes in Eq0 does not exceed 2−q0r + 2µ <
2−q0r + 2 · 2−q∞r ≤ ε0/4 + ε0/4 = ε0/2. Therefore, B ∩ Eq0 6= ∅. Let xq0 denote
the closest point in Eq0 ∩B to x. Note that obviously d(x, xq0) < 2−q0r+ 2µ. Since
xq0 ∈ B ⊂ A and d(xq0 , ∂A) > η, it follows from the fact that P is (λ, η)-accurate
that the function Process called with (xq0 , q0) returns 1, and thus xq0 ∈ Gq0 .
Obviously, in that case xq0 is also added to Gq0+1, and all the boxes in Sq0+1 which
contain xq0 are added to Wq0+1.

Let us now prove the inductive step. Assume that the statement in the lemma
holds true for some q ∈ {q0, . . . , q∞ − 3}. Let xq ∈ Eq be the point satisfying this
statement for this q. Let Bq+1 ⊂ Sq+1 be the set of those boxes which contain xq
as one of their corners. We are going to show which point to choose for xq+1 so
that the statement is satisfied for q + 1 with xq+1.

First consider the case in which x ∈
⋃
Bq+1. Then d(xq, x) ≤ 2−(q+1)r + 2µ <

2−(q+1)r + 2µ(q + 2 − q0), and we can take xq+1 := xq. If xq ∈ intAq≈ then

xq+1 = xq ∈ intAq+1
≈ because Aq≈ ⊂ Aq+1

≈ . Otherwise, by the inductive assumption,
xq+1 = xq ∈ Gq ∩ Gq+1 and by Lemma 7 applied to Q ∈ Gq+1, either all the boxes

in Bq+1 are contained in Aq+1
≈ , in which case xq+1 ∈ intAq+1

≈ , or xq+1 ∈ Gq+2 and

all the boxes in Sq+2 which contain xq+1 but are not contained in Aq+1
≈ are added

to Wq+2 in the run of Algorithm 4. This completes the proof of the inductive step
in the case in which x ∈

⋃
Bq+1.

Figure 3. Objects that appear in the geometric reasoning in the
inductive step in the proof of Lemma 8.

Now consider the complementary case (see Figure 3). Let Cq+1 denote the set
of all the vertices of the boxes in Bq+1. Let xq+1 be an element of Cq+1 ∩ B that
minimizes the distance from x. If xq+1 = xq (which can happen in rare situations,
because of uneven rounding to representable numbers) then the reasoning in the
previous case applies. Otherwise xq+1 6= xq. If x and xq+1 belong to some common



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 15

box Q̃ ∈ Sq+1 then d(x, xq+1) < 2−(q+1)r + 2µ ≤ 2−(q+1)r + 2µ(q + 2 − q0).
Otherwise, x is closer to xq+1 than to xq at least by the inner size of one box, that is,

d(x, xq+1) < d(x, xq)−
(
2−(q+1)r−2µ

)
≤
(
2−qr+2µ(q+1−q0)

)
−
(
2−(q+1)r−2µ

)
=

2−(q+1)r + 2µ(q + 2− q0). This proves the statement in the aspect of the distance
between x and xq+1. Let us now prove the remainder of this statement.

If xq ∈ intAq≈ then
⋃
Bq+1 ⊂ intAq≈ because Aq≈ is built of boxes with respect

to a coarser grid than those in Bq+1, and thus xq+1 ∈ intAq+1
≈ . Otherwise, xq ∈

Gq ∩Gq+1 and all the boxes in B which are not contained in Aq≈ are added toWq+1,
by the inductive assumption. Consider all the boxes Q1, . . . , Qk ∈ Bq+1 which
contain both xq and xq+1. If all of them are contained in Aq≈ then xq+1 ∈ intAq≈,
because Aq≈ is built of boxes with respect to a coarser grid than those in Sq+1.
Otherwise at least one of those boxes, say, Qi is added to Wq+1 in the run of
Algorithm 4. Two possibilities happen later: Either P(Qi) is computed and the
result is successful, in which case xq+1 is added to Gq+1 (unless it was added there
before), or Qi is determined to be a failure box either by computing P(Qi) = 0 or
by detecting a negative probe at one of its corners (different from xq+1), in which
case xq+1 is added to Tq+1 (unless it was added to Gq+1 before). Note that the
verification of P on xq+1 results in computing P(xq+1) = 1, which follows from the
(λ, η)-accuracy of P, because xq+1 ∈ B and thus d(xq+1, ∂A) > η. In this way, in
both cases xq+1 ∈ Gq+1, and by Lemma 7, either all the boxes in Sq+1 to which

xq+1 belongs are contained in Aq+1
≈ , and thus xq+1 ∈ intAq+1

≈ , or xq+1 ∈ Gq+2 and

all the boxes in Sq+2 which contain xq+1 but are not contained in Aq+1
≈ are added

to Wq+2. This ends the proof of the second case in the inductive step, and also of
the entire inductive step.

Applying the induction principle completes the proof. �

We are now ready to prove Theorem 6.

Figure 4. Geometric idea behind the proof of Theorem 6: We
show that for every x0 ∈ A there exists an x at the distance of
ε0/κ+δ/2 from x in a box B ⊂ A of inner size ε0/2 at the distance
at least η from ∂A, and d(x,A≈) does not exceed δ/2.

Proof of Theorem 6. Let us begin with the easy observation that A≈ ⊂ A because
in Algorithm 4 a box Q is only added to A if P(Q) = 1. Moreover, Sq 6= ∅ for all
q < q∞ because the inaccuracy µ of R in R is assumed to be below 2−q∞r, so the
length of each edge of each box in each Sq for q < q∞ is at least 2−(q∞−1)r − 2µ >

2−(q∞−1)r − 2 · 2−q∞r = 0.
Let x0 ∈ A. (See Figure 4 for a geometric illustration of this part of the proof.)

By the (ε, κ)-continuity of P , there exists a box B0 of inner size ε0 such that B0 ⊂ A
and d(x0, B0) ≤ ε0/κ (because ε0 < ε). It is a simple geometric argument to see that
there exists another box B ⊂ B0 of inner size ε0/2 such that d(B, ∂A) ≥ δ/2 > η
and d(x0, B) ≤ ε0/κ + δ/2. Take any x ∈ B such that d(x0, x) ≤ ε0/κ + δ/2. We
will show that there exists x≈ ∈ A≈ such that d(x, x≈) < δ/2. Since x is chosen
arbitrarily, this will imply that every element of A is at the distance smaller than
δ from some element of A≈, and thus dH(A,A≈) ≤ ε0/κ+ δ.



16 PAWE L PILARCZYK

Let us apply Lemma 8 to x and B, and consider xq∞−2 whose existence follows

from that lemma. We will show that xq∞−2 ∈ A≈. If xq∞−2 ∈ Aq∞−2
≈ then this

conclusion is trivial. Otherwise, xq∞−2 ∈ Gq∞−1 and all the boxes in Sq∞−1 which
contain xq∞−2 are added to Wq∞−1 in Algorithm 4, because none of these boxes is

contained in Aq∞−2
≈ . Note that at least one of these boxes, denoted further by Q, is

fully contained in B, because the inner size of B is ε0/2, and the diameter of these
boxes is at most 2−(q∞−1)r+ 2µ < 2−(q∞−1) + 2 · 2−q∞r = 2−(q∞−2)r < ε0/4. Since
the diameter of Q does not exceed 2−(q∞−2)r < λ and d(Q, ∂A) ≥ d(B, ∂A) > η,
it follows from the (λ, η)-accuracy of P that P(Q) = 1, and therefore Q ∈ Aq∞−1.
Thus xq∞−1 ∈ Q ⊂ A≈.

To complete the proof, take x≈ := xq∞−2 and note that d(x, xq∞−2) < 2−(q∞−2)r+
2µ(q∞ + 1− q0) < δ/4 + δ/4 = δ/2. �

We would like to remark that, although we do not prove it here, in the actual
applications the constructed set A≈ usually fills A quite well, and A \A≈ seems to
be contained in a relatively narrow belt along ∂A.

7. Examples and applications

In this section we show some examples and applications of the parallelization
method introduced in this paper.

We first consider a very elementary demonstration which illustrates the idea
of representing an area of interest in terms of boxes with gradually decreasing
grid size, as well as the idea of a lower approximation of this area. Then we
analyze a nontrivial application of the method introduced in this paper. In this
application, a rigorous lower bound is obtained for the set of those parameters of
an overcompensatory nonlinear Leslie population model for which there exist at
least two attractors.

7.1. Approximations of a ring. In this subsection we discuss a simple demon-
stration of the method introduced in this paper. We use the parallelization frame-
work to compute an approximation of the ring

A :=
{

(x, y) ∈ R : 500 ≤ x2 + y2 ≤ 3400
}
,

where R = [−64, 64] × [−64, 64] ⊂ R2. The function Process simply calculates
x2 + y2 for all the vertices of Q and returns 1 iff all the values are within the
prescribed range. A few subsequent approximations of this ring computed with the
increasing upper bound q∞ on the subdivision depth are illustrated in Figure 5.

Figure 5. Subsequent lower approximations of the ring A in R
computed for q∞ = 4, . . . , 8, respectively. Space is added between
adjacent boxes in order to illustrate the structure of each set.

As one can see, the ring is gradually better approximated. Its interior is sub-
sequently filled by adding boxes of decreasing size to the previously computed
approximation. In comparison to the “naive” approach of computing P(Q) for all



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 17

Q ∈ Sq∞−1(R), which would result in the same set A≈, the gain in the computa-
tional time is profound and is listed in the table below. The number of probes and
boxes is indicated on which P is evaluated in each run of the algorithm.

q∞ # probes # boxes #Sq∞−1(R) time savings
4 9 32 64 36%
5 26 108 256 48%
6 99 236 1,024 67%
7 324 452 4,096 81%
8 592 1,000 16,384 90%

7.2. Application to a population model. As a sample serious application of
the parallelization method introduced in this paper, we compute a lower bound for
the region A in the parameter space R ⊂ R2 for which a given dynamical system
exhibits two attractors.

Consider the overcompensatory Leslie population model in R2 analyzed numer-
ically in [11], which is generated by the function

(2) f(x1, x2; θ1, θ2, λ, p) =
(
(θ1x1 + θ2x2) e−λ(x1+x2), px1

)
,

where θ1, θ2, λ, p are some parameters. It has been shown in [11] that θ1, θ2 ∈
[10, 35], λ = 0.1, and p = 0.7 are meaningful values of the parameters, and thus
we will restrict our attention to (θ1, θ2) ∈ R := [10, 35]2 ⊂ R2 and λ, p as above.
Although our method is dimension-independent and equally well we would be able
to consider also p changing in some range, for instance p ∈ [0.5, 0.9] (as suggested
in [2]), or to discuss a higher-dimensional Leslie model (as given in [11]), we prefer
to stay with dimension 2 for the sake of ease and clarity of visual presentation of
the results.

Using interval arithmetic and algorithms introduced in [3] (see also [8]), it is
possible to analyze the global structure of the dynamics for entire boxes of param-
eters B ⊂ R by computing upper bounds for a Morse decomposition. The idea is
to isolate the recurrent dynamics and determine the gradient-like behavior of the
remaining trajectories (see [6] for details).

In this method, an a priori fixed rectangular area in the phase space that is
assumed (or known) to contain the dynamics of interest is subdivided into a finite
number of boxes with respect to some fixed uniform rectangular grid. Then an
outer bound of each box is computed in interval arithmetic [9] using the formula
for the generator of the dynamical system. The resulting set is then covered with
boxes in the phase space. In this way, a multivalued mapping between boxes is
created, which is represented by means of a directed graph. Strongly connected
path components in this graph correspond to isolating neighborhoods of Morse
sets [3], [8], and paths between them in the graph provide a bound for possible
connecting orbits in the underlying dynamical system.

In [2], comprehensive analysis of the dynamics using this technique is conducted
for a fixed subdivision Sq(R) of the set R. This method can provide lower bounds
for sets of parameters for which the dynamics has some specific properties. In
particular, the existence of multiple isolating neighborhoods that are mapped to
itself translates to the existence of multiple attraction basins, and thus the existence
of at least two attractors in the sense of Conley [6]. In this paper, we will focus
on finding a much more accurate rigorous lower bound A for the set of all the
parameters in R for which this happens.

We have chosen this particular property of existence of multiple attractors be-
cause of its importance from the biological point of view. Namely, the existence of
more than one attractor in the system contradicts the commonly held belief that



18 PAWE L PILARCZYK

the initial conditions of a population are not important for its asymptotic behav-
ior, because it will eventually stabilize at the equilibrium. In this case, however,
the system exhibits at least two different equilibrium states (corresponding to the
attractors), so the initial conditions actually do matter and cannot be ignored.

Although most likely the property which we analyze in this subsection is not
continuous (as defined in Section 6), our method can be applied to construct some
lower bound for the set on which this property is satisfied, and to make gradu-
ally better approximations of this set substantially more effectively than by direct
application of the technique introduced in [2].

Figure 6. A rigorous lower bound for the set of parameters
(θ1, θ2) ∈ [10, 35]2 for which the Leslie model (2) exhibits multiple
attractors, with three close-ups revealing its structure.

Figure 6 shows the set constructed for q∞ = 12 and a few close-ups in which
extra space between adjacent boxes was added in order to show the structure of the
set A≈. The time savings depending on various tested values of q∞ show similar
pattern to the ones observed for the example analyzed in the previous subsection,
with more than 99% savings at q∞ = 12.

Note that at some close-ups one can notice a few boxes Q ⊂ A which do not
satisfy the property P, but all their sub-boxes do satisfy P, and such boxes are
only located at a distance from the boundary of the computed area which is small
in comparison to the size of these boxes. This confirms empirically the fact that
overestimates arising from checking the property P with a formula for P using
interval arithmetic are most harmful close to ∂A. Moreover, we speculate that the
complicated shape of the top right-hand part of the computed set A≈ is also due
to the overestimates which are more harmful at some areas than at others. We are
inclined to believe that the complicated structure that can be seen in this area is
spurious, and we expect that A actually has smooth shape that can be deduced by
extrapolation from the remaining part of A. Our belief is justified by the fact that
many holes and gaps in the constructed set are gradually filled in as smaller and
smaller boxes are processed. One can see this at the close-up in the top right-hand
corner of Figure 6.

The source code of the program that was used to conduct the computations de-
scribed above is available at [10], together with the results of these computations.
This program uses the CAPD software library [4] for an implementation of the



PARALLELIZATION METHOD FOR A CONTINUOUS PROPERTY 19

interval arithmetic, and the CHomP software library [5] for the parallel computa-
tions framework as well as for the data structures for representing the constructed
set A≈.

Acknowledgments

The author would like to express his gratitude to Prof. Konstantin Mischaikow
for the inspiration to undertake this work, and for the suggestion of the title for
this paper. Also a thorough review and constructive remarks made by one of the
reviewers are gratefully acknowledged.

References

[1] Z. Arai, On hyperbolic plateaus of the Hénon map, Experiment. Math. 16 (2007), 181–188.
[2] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, Databases for the

global dynamics of multi-parameter systems, SIAM J. Appl. Dyn. Syst., accepted.

[3] H. Ban and W. Kalies, A computational approach to Conley’s decomposition theorem, Jour-
nal of Computational and Nonlinear Dynamics 1 (2006), 312–319.

[4] Computer Assisted Proofs in Dynamics, http://capd.ii.uj.edu.pl/.
[5] Computational Homology Project, http://chomp.rutgers.edu/.

[6] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series

in Math., no. 38, Amer. Math. Soc., Providence, RI, 1978.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, MIT

Press, Cambridge, MA, second edition, 2001.

[8] W. D. Kalies, K. Mischaikow and R. C. A. M. VanderVorst, An algorithmic approach to
chain recurrence, Found. Comput. Math. 5 (2005), 409–449.

[9] R. E. Moore, Interval Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.

[10] P. Pilarczyk, Parallelization method for a continuous property. Software and examples,
http://www.pawelpilarczyk.com/parallel/.

[11] I. Ugarcovici, H. Weiss, Chaotic dynamics of a nonlinear density dependent population model,

Nonlinearity 17 (2004), 1689–1711.

Pawe l Pilarczyk, Universidade do Minho, Centro de Matemática, Campus de Gual-

tar, 4710-057 Braga, Portugal

URL: http://www.pawelpilarczyk.com/

http://capd.ii.uj.edu.pl/
http://chomp.rutgers.edu/
http://www.pawelpilarczyk.com/parallel/
http://www.pawelpilarczyk.com/

	1. Introduction
	2. Preliminaries
	3. Parallel computations framework
	4. The subdivision algorithm
	4.1. Representable subdivisions
	4.2. Processing rectangular sets
	4.3. Preparing data for processing
	4.4. Acquiring processed data
	4.5. The main algorithm

	5. Time complexity of the algorithm
	6. Convergence of the method
	7. Examples and applications
	7.1. Approximations of a ring
	7.2. Application to a population model

	Acknowledgments
	References

