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Abstract. A generally applicable, automatic method for the efficient computation of a database of global dynamics of a
multiparameter dynamical system is introduced. An outer approximation of the dynamics for each subset of the parameter
range is computed using rigorous numerical methods and is represented by means of a directed graph. The dynamics is
then decomposed into the recurrent and gradient-like parts by fast combinatorial algorithms and is classified via Morse
decompositions. These Morse decompositions are compared at adjacent parameter sets via continuation to detect possible
changes in the dynamics. The Conley index is used to study the structure of isolated invariant sets associated with the
computed Morse decompositions and to detect the existence of certain types of dynamics. The power of the developed method
is illustrated with an application to the two-dimensional density-dependent Leslie population model. Large parts of this article
is based on our paper published in [1], which contains more detailed description of the method.
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INTRODUCTION

Given a nonlinear dynamical system, identifying and classifying the qualitative properties of the system over wide
ranges of parameter values is of fundamental importance in many disciplines. In particular, it is of primary interest to
many computational biologists. The fact that most topics of interest in systems biology are dynamic in nature suggests
the need for a comprehensive, yet efficient method for cataloging the global dynamics of nonlinear systems. In other
words, a method is desired which computationally constructs a database of global dynamical behavior of a specific
system over a range of parameters.

We restrict our attention to the setting of a multiparameter family of dynamical systems given by a continuous
function

f : X×Λ 3 (x,λ ) 7→ f (x,λ ) = fλ (x) ∈ X

where X is the phase space and Λ is the parameter space. A set Z ⊂ X is invariant at λ ∈ Λ if fλ (Z) = Z. We use the
notation F : X ×Λ→ X ×Λ for the extension of the system to include the parameters as explicit variables defined by
F(x,λ ) =

(
fλ (x),λ

)
=
(

f (x,λ ),λ
)
. For Λ0 ⊂ Λ we denote the restriction of F to X ×Λ0 by FΛ0 : X ×Λ0→ X ×Λ0.

Given a set S ⊂ X ×Λ we denote its restriction to Λ0 by SΛ0 := S ∩ (X ×Λ0). We often identify Sλ ⊂ X with
S{λ} = Sλ ×{λ}. In this language, a set S⊂ X×Λ is invariant over Λ0 if FΛ0(SΛ0) = SΛ0 .

1 The final version of this preprint has been published Proceedings of the International Conference on Numerical Analysis and Applied Mathematics,
Rethymno, Greece (September 18-22, 2009), Numerical Analysis and Applied Dynamics, Vols. 1 and 2, eds. T.E. Simos, G. Psihoyios, C. Tsitouras,
AIP Conference Proceedings 2009, Vol. 1168, pp. 918-921. DOI: 10.1063/1.3241632.



To provide perspective on the practicality and utility of our approach, we consider the two-dimensional version of
an over-compensatory Leslie population model g : R2→ R2 given by

(x1,x2) 7→ ((θ1x1 +θ2x2)e−φ(x1+x2), px1)

where θ1,θ2,φ and p are parameters. This model and its biological relevance is discussed in considerable detail in
work of Ugarcovici and Weiss [3]. As indicated there, the constant φ may be scaled arbitrarily, and thus we will
assume φ = 0.1 in this paper.

REVIEW OF CONLEY THEORY

Recall that a compact set N ⊂ X ×Λ0 is an isolating neighborhood for FΛ0 if Inv(N,FΛ0) ⊂ int X×Λ0(N) where
Inv(N,FΛ0) denotes the maximal invariant set in N under FΛ0 , and int X×Λ0(N) denotes the interior of N. An invariant
set SΛ0 ⊂ X ×Λ0 is an isolated invariant set if SΛ0 = Inv(N,FΛ0) for some isolating neighborhood N. To simplify the
presentation and analysis, throughout this paper we make use of the following assumption: there exists a compact set
B⊂ X×Λ which is an isolating neighborhood for F. Its maximal invariant set is denoted by S := Inv(B,F).

A Morse decomposition of SΛ0 is a finite collection M(SΛ0) =
{

MΛ0(p)⊂ SΛ0 | p ∈PΛ0

}
of disjoint isolated

invariant sets of FΛ0 , called Morse sets, which are indexed by the set PΛ0 on which there exists a strict partial order
>Λ0 , called an admissible order, such that for every (x,λ ) ∈ SΛ0 \

⋃
p∈P MΛ0(p) and any complete orbit γ of FΛ0

through (x,λ ) in SΛ0 there exist indices p >Λ0 q such that under FΛ0 ω(γ)⊂MΛ0(q) and α(γ)⊂MΛ0(p).
Observe that since PΛ0 is a strict partially ordered set, a Morse decomposition can be represented as an acyclic

directed graph MG(Λ0) called the Morse graph over Λ0. The elements of the index set PΛ0 , which naturally
correspond to the Morse sets, are the vertices of the Morse graph over Λ0, and the edges of the Morse graph over
Λ0 are the minimal order relations which through transitivity generate >Λ0 .

The Conley index, which is an algebraic topological invariant of isolated invariant sets, is used to understand the
structure of the dynamics within a Morse set [2].

To explain the index we begin by considering an arbitrary continuous map g and a pair of compact sets N = (N1,N0)
such that N0 ⊂ N1. Consider the pointed quotient space

(
N1/N0, [N0]

)
obtained by collapsing N0 to a single point [N0].

Define gN :
(
N1/N0, [N0]

)
→
(
N1/N0, [N0]

)
by gN(x) = g(x) if x,g(x) ∈ N1 \N0 and gN(x) = [N0] otherwise. The pair

N = (N1,N0) is an index pair if the map gN is continuous and cl(N1 \N0) is an isolating neighborhood.
For any Morse set MΛ0(p) there exists an index pair N = (N1,N0) such that the induced map FΛ0,N :

(
N1/N0, [N0]

)
→(

N1/N0, [N0]
)

is a continuous function and MΛ0(p) = Inv
(
cl(N1 \N0),FΛ0

)
. Passing to homology leads to a family of

group endomorphisms FΛ0,N∗ : H∗
(
N1/N0, [N0]

)
→ H∗

(
N1/N0, [N0]

)
.

There may exist different choices of index pairs which can lead to different group endomorphisms, therefore, to
define the Conley index of an isolated invariant set, one must consider equivalence classes of these group endomor-
phisms. In constructing our database, we do not utilize the full Conley index; instead, we store a weaker invariant,
namely the nonzero eigenvalues of FΛ0,N∗ restricted to the torsion-free part of H∗

(
N1/N0, [N0]

)
.

Let Λ0 ⊂ Λ and M(SΛ0) =
{

MΛ0(p)⊂ SΛ0 | p ∈PΛ0

}
be a Morse decomposition of SΛ0 with admissible order

>Λ0 . The Conley-Morse graph over Λ0 of M(SΛ0) is denoted by CMG(Λ0) and consists of MG(Λ0), the Morse graph
over Λ0 with the additional information of the nonzero eigenvalues of the torsion-free part of the index map of each
Morse set assigned to the associated node.

We will compute the Conley-Morse graphs over distinct fixed subregions of parameter space. This raises the question
of how to relate the resulting Conley-Morse graphs. One answer is provided in the following definition.

Definition 1 Let Λ0,Λ1 ⊂ Λ be such that Λ0,1 := Λ0 ∩ Λ1 is a nonempty, contractible set. Let M(SΛi) ={
MΛi(p)⊂ SΛi | p ∈PΛi

}
for i = 0,1 be Morse decompositions with admissible orders >i. The associated

Morse graphs MG(Λ0) over Λ0 and MG(Λ1) over Λ1 are equivalent if there is an order preserving bijection
ι : (PΛ0 ,>0)→ (PΛ1 ,>1) such that MΛ0(p)∩ (X×Λ0,1) = MΛ1

(
ι(p)

)
∩ (X×Λ0,1).

COMBINATORIAL REPRESENTATION OF DYNAMICS

Let X and Q denote grids on X and Λ, respectively. Observe that X ×Q is a grid for X ×Λ. Given δ > 0, we
can choose grids such that diam(X )< δ and diam(Q)< δ . A combinatorial multivalued map F : Z −→→Z assigns



to each element G ∈ Z a finite subset F (G) of Z . Important for efficient computation is the observation that a
combinatorial multivalued map F : Z −→→Z is equivalent to a directed graph with vertices Z and directed edges
(G,H) whenever H ∈F (G).

Fix λ ∈ Λ and a compact set Bλ ⊂ X . We relate fλ |Bλ
: Bλ → X to the combinatorial multivalued map

Fλ : X (Bλ )−→→X by requiring that Fλ outer approximates fλ . A multivalued map Fλ : X (Bλ )−→→X is called an
outer approximation of fλ restricted to |X (Bλ )| if fλ (G)⊂ int

(
|Fλ (G)|

)
for all G ∈X (Bλ ).

Since we can only perform a finite number of computations, we cannot compute Fλ individually for each λ ∈ Λ.
By our assumption, the compact set B⊂ X×Λ is an isolating neighborhood for F , and S = Inv(B,F). From the point
of view of the computational algorithms it is more convenient to additionally assume the following condition:

For each grid element Q ∈Q the set BQ := X
(⋃

λ∈Q Bλ

)
has the property that SQ = Inv

(
|BQ|×Q,FQ

)
.

Now for each Q∈Q we consider a multivalued map FQ : BQ−→→X with the property that f (G,Q)⊂ int
(
|FQ(G)|

)
for all G ∈BQ. Observe that if λ ∈ Q, then FQ is an outer approximation of fλ restricted to |BQ|. We organize the
collection of FQ via the following definition. Set B :=

⋃
Q∈Q

(
BQ×{Q}

)
⊂X ×Q. A combinatorialization of F

on |B| is the combinatorial multivalued map F : B−→→X ×Q defined by F (G,Q) = FQ(G)×{Q}. The following
proposition indicates how outer approximations are used to capture invariant sets.

Proposition 2 Suppose F is a combinatorialization of F on |B|. Let Q ∈ Q, and suppose Y ⊂BQ. If N is the
maximal subset of Y such that the restriction FQ : N −→→N is closed, then Inv(|Y |×Q,FQ) = Inv(|N |×Q,FQ).

A natural starting point for examining the global structure of both a dynamical system and a directed graph is to
look for recurrence. The recurrent set of FQ : SQ−→→X is defined by

RQ := {G ∈SQ | there exists a nontrivial path from G to G in SQ} .

The recurrent set RQ is naturally partitioned into equivalence classes {MQ(p) | p ∈PQ} called combinatorial Morse
sets according to the following equivalence relation: G' H if and only if there exists a path in FQ from G to H and a
path in FQ from H to G.

Since every node in SQ that lies on a cycle is an element of RQ, we can define a strict partial order on the indexing
set PQ by setting p >Q q if there exist G ∈MQ(p), H ∈MQ(q), and a path from G to H in FQ.

Observe that this construction implies that a combinatorial Morse decomposition can be represented as a directed
graph. Let MG(FQ) denote the acyclic directed graph with vertices consisting of the elements of PQ and the minimal
set of directed edges p→ q which generate p >Q q under transitivity. The following proposition states that given a
combinatorial Morse decomposition for an outer approximation FQ, there is a Morse decomposition of FQ such that
MG(FQ) is the Morse graph over Q for the Morse decomposition.

Proposition 3 Let Q∈Q and let {MQ(p) | p∈PQ} be the set of combinatorial Morse sets for FQ. If FQ
(
MQ(p)

)
⊂

BQ for all p∈PQ, then the acyclic directed graph MG(FQ) which represents the combinatorial Morse sets is a Morse
graph over Q for the Morse decomposition of SQ defined by

M(SQ) := {Inv (|MQ(p)|×Q,FQ) | p ∈PQ} .

Moreover, each |MQ(p)| is an isolating neighborhood for Inv |MQ(p)|.

We now turn to the question of comparing the dynamical information over different parameter regions.

Definition 4 To each Q ∈ Q, there is an associated CMG(FQ). Consider Q0,Q1 ∈ Q such that Q0 ∩Q1 6= /0. The
clutching graph J (Q0,Q1) is defined to be the bipartite graph with vertices PQ0 ∪PQ1 (the union of the vertices
from MG(FQ0) and MG(FQ1)) and with an edge (p,q) ∈PQ0 ×PQ1 if MQ0(p)∩MQ1(q) 6= /0.

Observe that if every vertex in PQ0 in the clutching graph J (Q0,Q1) has a unique edge, then we can define the
clutching function ιQ1,Q0 : PQ0 →PQ1 by ιQ1,Q0(p) := q for each edge (p,q) of J (Q0,Q1).

Definition 5 Consider the set of Conley-Morse graphs over the grid elements of the parameter space, i.e.
{CMG(FQ) | Q ∈Q}. Let Q0,Q1 ∈Q such that Q0∩Q1 6= /0. If the clutching function ιQ1,Q0 : PQ0→PQ1 is defined
and gives a directed graph isomorphism from MG(FQ0) to MG(FQ1), then we say that the Conley-Morse graphs
over Q0 and Q1, CMG(FQ0) and CMG(FQ1), are equivalent. The equivalence classes of {CMG(FQ) | Q ∈Q} with
respect to the transitive closure of this relation are called continuation classes.



Proposition 6 Let Q0,Q1 ∈ Q such that Q0 ∩Q1 6= /0. If the clutching function ιQ1,Q0 : PQ0 →PQ1 is a directed
graph isomorphism then there exists a Morse decomposition M(SQ0∪Q1)=

{
MQ0∪Q1(r) | r ∈PQ0∪Q1

}
with admissible

order >Q0∪Q1 such that its restriction is the same as the Morse decomposition M(SQi) over Qi for each i = 0,1.
Specifically, there is a natural correspondence πi : PQ0∪Q1 →PQi such that MQi

(
πi(r)

)
= MQ0∪Q1(r)∩ (X ×Qi)

for any r ∈PQ0∪Q1 , and >Q0∪Q1 agrees with >Qi through the identification. Furthermore, the nonzero eigenvalues
associated to the index maps for pairs of corresponding Morse sets MQ0(π0(r)) and MQ1(π1(r)) are the same.

Definition 7 The associated continuation graph CG(F ) is a graph whose vertices are the continuation classes{(
CMG( j),Q( j)

)
| j = 1, . . . ,J

}
where Q(k)⊂Q is the set of parameter boxes associated with the k-th continuation

class and CMG(k) = CMG(FQ) for some Q ∈Q(k).

The continuation graph is our database. Of course, additional, problem specific information can also be stored.
However, as will be indicated in the context of the density dependent Leslie model, this database provides an extremely
compressed yet useful means of describing the global dynamics over a broad range of parameter values.

DATABASE FOR THE LESLIE MODEL

Here we present the results of the computational procedure applied to the density dependent Leslie model when
p = 0.7. An interactive presentation of the results can be found at http://chomp.rutgers.edu/database/,
and the C++ source code of the software used to compute this database has also been made freely available.

We compute the continuation graph over the parameter space Λ := {(θ1,θ2) ∈ [8,37]× [3,50]}. We choose an
equipartitioned 50×50 grid for this parameter space with m = 2, b1 = 8, b2 = 3, ζ1 = 29, ζ2 = 47, and K1 = K2 = 50.
The output is indicated in Figure 1. Since there is no natural order on the continuation classes, we have labeled them
from “Class 1” to “Class 17”, according to their volume in parameter space, beginning with the largest region.

FIGURE 1. Left: The continuation graph computed for the density dependent Leslie population model with Λ =
{θ = (θ1,θ2) ∈ [8,37]× [3,50]}, and p = 0.7. The label of each node indicates the class number and the number of boxes in
Q( j). Right: Continuation diagram for the same parameter region.

The purpose of the database is to shed light on the possible dynamics exhibited over a wide range of parameter
values. To be effective it must be able to be queried. Recall that the database consists of the continuation graph as
indicated in Figure 1. Thus, we have the following information at our disposal:

(1) Associated with each node in the continuation graph we have the Conley-Morse graph and the set of parameter
values Q(k) associated with the continuation class.

(2) The edges of the continuation graph indicating which continuation classes intersect in parameter space.

A fundamental question for any dynamical system is whether there exist multiple basins of attraction. We will
demonstrate how the database can be used to answer this question. Our ability to detect basins of attraction is based
on the following proposition which follows from the fact that FQ is an outer approximation.

Proposition 8 Assume that S is a global attractor for F. Let {MQ(p) | p ∈PQ} be the set of combinatorial Morse
sets for FQ. If q is minimal with respect to the order >Q, then M (q) is a trapping region for FQ.



With regard to the density dependent Leslie model, the set S is the global attractor for the dynamics restricted to
(R+)2. Therefore, the existence of multiple disjoint trapping regions in (R+)2 implies the existence of multiple distinct
basins of attraction. Thus the following query identifies regions in parameter space which support multiple basins of
attraction: “Which continuation classes have a Conley-Morse graph with more than one minimal element?”

The result of this query is {Q(k) : k = 4,12,13}, and each of the graphs has two minimal elements. Thus
Q̂ :=

⋃
k=4,12,13 Q(k) is a region in parameter space for which there exist at least two basins of attraction. From

the edges of the connection graph we see that this defines a connected region.
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