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Abstract. A generally applicable, automatic method for the efficient computation of a database
of global dynamics of a multiparameter dynamical system is introduced. An outer approximation
of the dynamics for each subset of the parameter range is computed using rigorous numerical meth-
ods and is represented by means of a directed graph. The dynamics is then decomposed into the
recurrent and gradient-like parts by fast combinatorial algorithms and is classified via Morse decom-
positions. These Morse decompositions are compared at adjacent parameter sets via continuation
to detect possible changes in the dynamics. The Conley index is used to study the structure of
isolated invariant sets associated with the computed Morse decompositions and to detect the ex-
istence of certain types of dynamics. The power of the developed method is illustrated with an
application to the two-dimensional, density-dependent, Leslie population model. An interactive vi-
sualization of the results of computations discussed in the paper can be accessed at the website
http://chomp.rutgers.edu/database/, and the source code of the software used to obtain these
results has also been made freely available.
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1. Introduction. The global dynamics of a nonlinear system can exhibit struc-
tures at all spatial scales, for example, the fractal structures associated to chaotic
dynamics. The same phenomenon can occur with respect to the parameters, that is,
global dynamical structures can change on Cantor sets in parameter space. From the
point of view of scientific computation, only a finite amount of information can be
computed, and therefore, any computational characterization of global dynamics of a
multiparameter system can be expected to represent a dramatic reduction of informa-
tion. Nevertheless, the computation of global dynamical information is an important
problem for applications, which leads to the questions of how to characterize global
dynamical structures and how to identify changes in these structures in practice. The
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fact that this is a nontrivial task has been made clear by the work of the dynamical
systems community over the last century.

Identifying and classifying the qualitative properties of models over wide ranges of
parameter values is of fundamental importance in many disciplines, and in particular
it is of primary interest to many computational biologists [10]. The fact that most
topics of interest in systems biology are dynamic in nature suggests the need for a
comprehensive, yet efficient method for cataloging the global dynamics of nonlinear
systems. In other words, a method is desired which computationally constructs a
database of global dynamical behavior of a specific system over a range of parameters.

The starting point for our computational methods is Conley’s topological ap-
proach to dynamics [2], which we review in the next section. The prior work in
[1, 5, 9, 12, 24] has shown that Conley theory is an appropriate theoretical base for
designing algorithms in computational dynamics. The purpose of this paper is to
demonstrate that these ideas can be used to design an efficient computational frame-
work for constructing databases of global dynamics of specific systems over multiple
parameters. While the methods we propose are general, we illustrate them using a
particular population model which we describe in Section 1.2.

1.1. Preliminary ideas. We restrict our attention to the setting of a multipa-
rameter family of dynamical systems given by a continuous function

f : X × Λ 3 (x, λ) 7→ f(x, λ) = fλ(x) ∈ X (1.1)

where the phase space X is a locally compact metric space and the parameter space
Λ is a compact, locally contractible, connected metric space. Note that we do not
assume that fλ is a homeomorphism.

The fundamental structures in any dynamical system are the invariant sets. A
set Z ⊂ X is invariant at λ ∈ Λ if fλ(Z) = Z. Since we cannot perform computations
at each parameter value independently, we are interested in considering sets which
are invariant with respect to a subset of the parameter space. We use the notation
F : X × Λ→ X × Λ for the trivial extension of the system to include the parameters
as explicit variables defined by

F (x, λ) =
(
fλ(x), λ

)
=
(
f(x, λ), λ

)
. (1.2)

For Λ0 ⊂ Λ we denote the restriction of F to X × Λ0 by FΛ0 : X × Λ0 → X × Λ0.
Observe that F = FΛ and that fλ is readily identified with F{λ}. Moreover, given a
set S ⊂ X ×Λ we denote its restriction to Λ0 by SΛ0

:= S ∩ (X ×Λ0). In particular,
we often identify Sλ ⊂ X with S{λ} = Sλ × {λ}. In this language, a set S ⊂ X × Λ
is invariant over Λ0 if FΛ0

(SΛ0
) = SΛ0

, which is an equivalent way to state that the
set Sλ is invariant at all λ ∈ Λ0.

We wish to identify and characterize a finite collection of invariant sets which
determine the global, qualitative behavior of the dynamics. In addition, we need a
method for comparing two invariant sets Sλ0

and Sλ1
at distinct parameters. Deciding

what sets to compute and how to compare them are the fundamental issues we attempt
to address.

We emphasize that while the amount of information that can be computed is
finite, this does not mean that we cannot detect or characterize dynamical structures
that occur on arbitrarily small scales. For example, topological techniques can be
used to identify chaotic dynamics via a semiconjugacy onto a subshift of finite type,
see [12]. Moreover, even though we cannot compute the dynamics at each parameter
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separately, this does not mean that we cannot obtain results which apply to every
parameter value. Indeed, the methods we employ do compute mathematically rigorous
global structures for invariant sets at all parameter values.

1.2. Model example. To provide perspective on the practicality and utility of
our approach, we consider the two-dimensional version of an overcompensatory Leslie
population model g : R2 × R4 → R2 given by[

x1

x2

]
7→
[

(θ1x1 + θ2x2)e−φ(x1+x2)

px1

]
,

where the fertility rates decay exponentially with population size. This model and
its biological relevance is discussed in considerable detail in work of Ugarcovici and
Weiss [25]. As indicated there, in view of g(x, θ, p, φ) = φ−1g(φx, θ, p, 1), the constant
φ may be scaled arbitrarily, and thus it suffices to study f : R2 × R3 → R2 given by

(x, λ) =

[ x1

x2

]
,

 θ1

θ2

p

 7→ f(x, λ) =

[
(θ1x1 + θ2x2)e−0.1(x1+x2)

px1

]
(1.3)

Furthermore, the detailed numerical studies of [25] indicate that this system exhibits
a wide variety of different dynamical behavior, which suggests that it provides a
meaningful test for the usefulness of the techniques introduced in this paper.

1.3. Outline of the paper. In the remainder of the paper we develop our
method and apply it to the Leslie model. In Section 2 we introduce the dynamical
structures which we utilize and review Conley theory. In Section 3 we introduce a
method for building a combinatorial representation of the dynamics and a means of
comparing the computed structures at different parameters. In Section 4 we address
the question of efficient computational algorithms based on rectangular grids in X
and Λ. In Section 5 we describe a database computed with our methods for the model
example introduced in Section 1.2 with p = 0.7 and θ1, θ2 varying in selected ranges,
and we show how this database can be queried for various dynamical properties.
Finally, in Section 6 we briefly mention a result of similar computations where all
three parameters are varied.

2. Review of Conley theory. Recall that a compact set N ⊂ X × Λ0 is an
isolating neighborhood for FΛ0 if

Inv (N,FΛ0) ⊂ intX×Λ0(N)

where Inv (N,FΛ0) denotes the maximal invariant set inN under FΛ0 , and intX×Λ0(N)
denotes the interior of N with respect to the subspace topology on X ×Λ0. Isolating
neighborhoods are computable and hence provide a means of identifying invariant
sets. In particular, an invariant set SΛ0

⊂ X × Λ0 is an isolated invariant set if
SΛ0

= Inv (N,FΛ0
) for some isolating neighborhood N .

As indicated in [2, 15], the space of isolated invariant sets is a sheaf. More
precisely, if N is an isolating neighborhood for F = FΛ and S = Inv (N,F ), then for
any Λ0 ⊂ Λ, NΛ0

is an isolating neighborhood for FΛ0
and SΛ0

= Inv (NΛ0
, FΛ0

). In
particular, for any λ ∈ Λ, S{λ} ⊂ X × {λ} is an isolated invariant set for F{λ} : X ×
{λ} → X × {λ} and Sλ ⊂ X is an isolated invariant set for fλ : X → X.

To simplify the presentation and analysis, throughout this paper we make use of
the following assumption and establish the following notation.
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A1: There exists a compact set B ⊂ X × Λ which is an isolating
neighborhood for F . Its maximal invariant set is denoted by S :=
Inv (B,F ).

Using the sheaf property of isolated invariant sets, SΛ0
denotes the restriction of

S to X ×Λ0, which is an isolated invariant set for FΛ0 if Λ0 is compact. As indicated
above, we are interested in understanding the structure of Sλ for all λ ∈ Λ, and we
make use of two essential ideas due to Conley [2]: Morse decompositions and the
Conley Index.

2.1. Morse decompositions. Recall that a Morse decomposition of SΛ0 is a
finite collection

M(SΛ0
) = {MΛ0

(p) ⊂ SΛ0
| p ∈ PΛ0

}

of disjoint isolated invariant sets of FΛ0
, called Morse sets, which are indexed by the

set PΛ0
on which there exists a strict partial order >Λ0

, called an admissible order,
such that for every (x, λ) ∈ SΛ0

\
⋃
p∈PMΛ0

(p) and any complete orbit γ of FΛ0

through (x, λ) in SΛ0
there exist indices p >Λ0

q such that under FΛ0

ω(γ) ⊂MΛ0
(q) and α(γ) ⊂MΛ0

(p).

Morse decompositions provide a coarse but global description of the dynamics on SΛ0
.

Remark 2.1. With regard to the construction of a database for global dynamics,
we make several important observations concerning Morse decompositions, see [2, 13].

1. Morse decompositions of SΛ0 are not unique. They can often be refined or
coarsened, and many systems have no finest Morse decomposition.

2. The empty set can be a Morse set.
3. Every structure within SΛ0

that is associated with recurrent dynamics, e.g. a
fixed point, a periodic orbit, or chaotic dynamics, must lie in some Morse set.
Away from the Morse sets the dynamics is gradient-like and the direction of
trajectories is captured by an admissible partial order.

4. Given a Morse decomposition, there is a unique minimal admissible partial
order called the flow-defined order. Any extension of the flow-defined order
which maintains a strict partial order produces an admissible order.

5. Consider a Morse decomposition M(SΛ0
) = {MΛ0

(p) ⊂ SΛ0
| p ∈ PΛ0

} of SΛ0

with admissible order >Λ0 . If Λ1 ⊂ Λ0, then the collection of sets

{MΛ1
(p) ⊂ SΛ1

| p ∈ PΛ0
} ,

where MΛ1
(p) := MΛ0

(p)∩ (X ×Λ1), is a Morse decomposition of SΛ1
under

FΛ1 with the same admissible order. �

Observe that since PΛ0
is a strict partially ordered set, a Morse decomposition can

be represented as an acyclic directed graph MG(Λ0) called the Morse graph over Λ0.
The elements of the index set PΛ0 , which naturally correspond to the Morse sets, are
the vertices of the Morse graph over Λ0, and the edges of the Morse graph over Λ0 are
the minimal order relations which through transitivity generate >Λ0

. In other words,
for p, q ∈ PΛ0

there is a directed edge p→ q in MG(Λ0) if p >Λ0
q and there does not

exist r ∈ PΛ0
such that p >Λ0

r >Λ0
q.

Computationally, we obtain Morse decompositions indirectly, and often it can be
established by further computation that a Morse set is empty. In that case, such
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a set can be removed from the Morse decomposition as described by the following
proposition whose proof follows directly from the definition of a Morse decomposition.

Proposition 2.2. Consider a Morse decomposition M(SΛ0) =
{
MΛ0(p) ⊂ SΛ0 |

p ∈ PΛ0

}
of SΛ0

with admissible order >. Assume MΛ0
(p0) = ∅. Then

M′(SΛ0) := {MΛ0(p) ⊂ SΛ0 | p ∈ PΛ0 \ {p0}}

is a Morse decomposition of SΛ0
and an admissible order is given by >′ where for all

p, q ∈ PΛ0 \ {p0} we have p >′ q if and only if p > q.
From Proposition 2.2, if MG(Λ0) is the Morse graph over Λ0 corresponding to

M(SΛ0
), then MG′(Λ0), the Morse graph over Λ0 corresponding to M′(SΛ0

), has
vertices PΛ0

\ {p0} and has an edge p → q if either p → q is an edge in MG(Λ0) or
p → p0 → q are edges in MG(Λ0). The simplified Morse graph MG′(Λ0) is called
a trivial reduction of MG(Λ0). Whenever possible, we work with a trivial reduction
of a Morse graph. The possibility that a Morse set is trivial can be detected via the
Conley index which is described in the next section.

2.2. The Conley index. As explained in Section 3, computational methods
exist to find Morse decompositions, see [1]. The Conley index, which is an algebraic
topological invariant of isolated invariant sets, is used to understand the structure of
the dynamics within a Morse set.

To explain the index we begin by considering an arbitrary continuous map g : Z →
Z on a locally compact metric space and a pair of compact sets N = (N1, N0) such
that N0 ⊂ N1 ⊂ Z. Consider the pointed quotient space

(
N1/N0, [N0]

)
obtained by

collapsing N0 to a single point [N0]. Define gN :
(
N1/N0, [N0]

)
→
(
N1/N0, [N0]

)
by

gN (x) =

{
g(x) if x, g(x) ∈ N1 \N0

[N0] otherwise.

The pair N = (N1, N0) is an index pair if the map gN is continuous and cl (N1 \N0)
is an isolating neighborhood [21].

The following two facts about index pairs are most relevant and can be found in
[2, 13].

1. For any isolated invariant set K, there exists at least one index pair N =
(N1, N0) such that K = Inv (cl (N1 \N0), g).

2. For any isolated invariant set K, there can exist many index pairs which
isolate K.

The first fact implies that for any Morse set MΛ0(p) for the system FΛ0 there
exists an index pair N = (N1, N0) such that the induced map FΛ0,N :

(
N1/N0, [N0]

)
→(

N1/N0, [N0]
)

is a continuous function and MΛ0
(p) = Inv

(
cl (N1 \N0), FΛ0

)
. Passing

to homology leads to a family of group endomorphisms

FΛ0,N∗ : H∗
(
N1/N0, [N0]

)
→ H∗

(
N1/N0, [N0]

)
. (2.1)

The second fact allows for different choices of index pairs which can lead to
different group endomorphisms. Thus, to define the Conley index of an isolated
invariant set, such as a Morse set MΛ0

(p), one must consider equivalence classes of
these group endomorphisms [13]. In constructing our database, we do not utilize the
full Conley index; instead, we store a weaker invariant, namely the nonzero eigenvalues
of FΛ0,N∗ restricted to the torsion-free part of H∗

(
N1/N0, [N0]

)
. This weaker invariant

is chosen because these eigenvalues are readily computed and compared.
Remark 2.3. With regard to the construction and interpretation of the database,

there are several important observations about the index to be made, see [13].
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1. If the Conley index is trivial, then the map FΛ0,N∗ is nilpotent. This im-
plies that the eigenvalues of FΛ0,N∗ restricted to the torsion-free part of
H∗
(
N1/N0, [N0]

)
are all zero.

2. The empty set is an isolated invariant set with trivial Conley index. Thus, if
there are nonzero eigenvalues of FΛ0,N∗ restricted to the torsion-free part of
H∗
(
N1/N0, [N0]

)
, then MΛ0

(p) 6= ∅.
3. There exist nontrivial isolated invariant sets with trivial Conley index. For

example, consider the logistic map gλ(x) = λx(1−x), λ ∈ [1, 4], and an index
pair N = (N1, N0) =

(
[−1, 2], {−1, 2}

)
. The index map FN∗ is nilpotent, but

clearly Sλ = Inv (N1 \N0, gλ) 6= ∅.
4. The Conley index can be used to reconstruct some of the structure of the

dynamics of the associated isolated invariant set. In particular, under appro-
priate conditions the Conley index can be used to conclude the existence of
fixed points, periodic orbits, and chaotic dynamics.

5. Suppose Λ1 ⊂ Λ0 are both contractible. If MΛ0(p) is a Morse set, or indeed
any isolated invariant set, then the nonzero eigenvalues of the torsion-free
part of any index map FΛ0,N∗ are identical to the nonzero eigenvalues of the
torsion-free part of any index map FΛ1,N∗ for the set MΛ1

(p) = MΛ0
(p) ∩

(X × Λ1). �

2.3. Conley-Morse graphs. We are now in a position to describe the funda-
mental element of our database. Let Λ0 ⊂ Λ and let M(SΛ0

) = {MΛ0
(p) ⊂ SΛ0

| p ∈ PΛ0
}

be a Morse decomposition of SΛ0
with admissible order >Λ0

. The Conley-Morse graph
over Λ0 of M(SΛ0) is denoted by CMG(Λ0) and consists of MG(Λ0), the Morse graph
over Λ0 with the additional information of the nonzero eigenvalues of the torsion-free
part of the index map of each Morse set assigned to the associated node. We present
this information by labeling each node in the following format.

pk : n→ {∗}

denotes the fact that the k-th Morse set has nonzero eigenvalues {∗} on the n-th level
of homology. If the k-th Morse set has no nonzero eigenvalues then we write

pk : 0 .

An example of how this information can be used to describe the structure of the
dynamics is given in Proposition 5.8.

As described in Sections 3 and 4, we compute the Conley-Morse graphs over
distinct fixed subregions of parameter space. This raises the question of how to relate
the resulting Conley-Morse graphs. One answer is provided in the following definition.

Definition 2.4. Assume A1. Let Λ0,Λ1 ⊂ Λ be such that Λ0,1 := Λ0 ∩ Λ1 is a
nonempty, contractible set. Let

M(SΛi) = {MΛi(p) ⊂ SΛi | p ∈ PΛi}

for i = 0, 1 be Morse decompositions with admissible orders >i. The associated Morse
graphs MG(Λ0) over Λ0 and MG(Λ1) over Λ1 are equivalent if there exists an order
preserving bijection ι : (PΛ0

, >0)→ (PΛ1
, >1) such that

MΛ0
(p) ∩ (X × Λ0,1) = MΛ1

(
ι(p)

)
∩ (X × Λ0,1).
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The continuation property of the Conley index [2] implies that if MG(Λ0) and
MG(Λ1) are equivalent via the order preserving bijection ι : (PΛ0

, >0) → (PΛ1
, >1),

then the Conley-Morse graphs CMG(Λ0) and CMG(Λ1) are also equivalent, that is,
the nonzero eigenvalues associated to corresponding Morse sets are identical.

3. Combinatorial representation of dynamics. Conley-Morse graphs are
the key elements of information stored in our database. In this section we describe
a general procedure for computing these graphs. We begin by describing a means of
combinatorializing the dynamics.

Recall [17] that a grid on a metric space Z is a collection Z of nonempty, compact
subsets of Z with the following properties:

(a) Z =
⋃
G∈Z G,

(b) G = cl
(
int (G)

)
for all G ∈ Z,

(c) G ∩ int (H) = ∅ for all G 6= H ∈ Z, and
(d) if K ⊂ Z is compact, then {G ∈ Z | G ∩K 6= ∅} is a finite set.

The grid Z has the simple intersection property if G,H ∈ Z and G ∩ H 6= ∅ im-
plies that G ∩ H is contractible. The diameter of a grid is defined by diam (Z) :=
supG∈Z diam (G), and the realization map |·| is a function from subsets of Z to subsets
of Z defined by |A| :=

⋃
A∈AA. Given Y ⊂ Z, define

Z(Y ) := {G ∈ Z | int (G) ∩ Y 6= ∅} .

For the remainder of the paper, X and Q denote grids with the simple intersection
property on X and Λ, respectively. Observe that X ×Q is a grid for X×Λ. As shown
in [9], given δ > 0 we can choose grids such that diam (X ) < δ and diam (Q) < δ.

A combinatorial multivalued map F : Z −→→Z assigns to each element G ∈ Z a
finite (possibly empty) subset F(G) of Z. Important for efficient computation is
the observation that a combinatorial multivalued map F : Z −→→Z is equivalent to a
directed graph with vertices Z and directed edges (G,H) whenever H ∈ F(G). A
directed graph is closed if each vertex is both the head of at least one edge and the
tail of at least one edge.

We use combinatorial multivalued maps on the grid X as a means to discretize
and combinatorially approximate the dynamics of f . For a more detailed description
see [9]. Fix λ ∈ Λ and a compact set Bλ ⊂ X. We relate fλ|Bλ : Bλ → X to the com-
binatorial multivalued map Fλ : X (Bλ)−→→X by requiring that Fλ outer approximates
fλ in the following sense [24]. A multivalued map Fλ : X (Bλ)−→→X is called an outer
approximation of fλ restricted to |X (Bλ)| if fλ(G) ⊂ int

(
|Fλ(G)|

)
for all G ∈ X (Bλ).

The property of being an outer approximation is the key to approximating the
dynamics of f combinatorially. Since we can only perform a finite number of compu-
tations, we cannot compute Fλ individually for each λ ∈ Λ. Recall that we have made
the assumption A1 so that the compact set B ⊂ X × Λ is an isolating neighborhood
for F , and S = Inv (B,F ). From the point of view of the computational algorithms
it is more convenient to additionally assume the following condition similar in spirit
to A1. As it is made clear via Remarks 4.3 and 5.2, these two assumptions are
computationally compatible.

A1′: For each grid element Q ∈ Q the set BQ := X
(⋃

λ∈QBλ
)

has

the property that SQ = Inv
(
|BQ| ×Q,FQ

)
.

Now for each Q ∈ Q we consider a multivalued map FQ : BQ−→→X with the prop-
erty that

f(G,Q) ⊂ int
(
|FQ(G)|

)
(3.1)
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for all G ∈ BQ. Observe that if λ ∈ Q, then FQ is an outer approximation of fλ
restricted to |BQ|. We organize the collection of FQ via the following definition. Set

B :=
⋃
Q∈Q

(
BQ × {Q}

)
⊂ X ×Q.

A combinatorialization of F on |B| is the combinatorial multivalued map F : B−→→X×Q
defined by

F(G,Q) = FQ(G)× {Q} .

Note that F is composed of a collection of outer approximations of each FQ.
The following proposition indicates how outer approximations are used to capture

invariant sets.
Proposition 3.1. Suppose A1′ holds and F is a combinatorialization of F

on |B|. Let Q ∈ Q, and suppose Y ⊂ BQ. If N is the maximal subset of Y such that
the restriction FQ : N −→→N is closed, then

Inv (|Y| ×Q,FQ) = Inv (|N | ×Q,FQ).

Proof: Let (x, λ) ∈ Inv (|Y| × Q,FQ) and choose any G ∈ Y that contains x. Let
γx be a complete orbit of FQ through (x, λ) in Inv (|Y| × Q,FQ). Since FQ satisfies
(3.1), there exists a sequence {Gn} in Y with G0 = G and Gn+1 ∈ FQ(Gn) such
that γx(n) ∈ Gn × Q for all n ∈ Z. Therefore G ∈ N , because it lies in a closed
subgraph {Gn} of Y, which implies that {Gn} ⊂ N , and thus γx ⊂ |N | ×Q. Hence
(x, λ) ∈ Inv (|N | × Q,FQ). This implies that Inv (|Y| × Q,FQ) ⊂ Inv (|N | × Q,FQ).
Since the opposite inclusion is trivial, this concludes the proof.

Proposition 3.1 states that the maximal invariant set is captured by the largest
closed subgraph of a combinatorialization. We have already commented that grids of
arbitrarily small diameter exist in general. If SQ is the largest closed subgraph of BQ,
then it follows from the results in [9] that |SQ| converges to SQ in Hausdorff metric
as the grid diameters of X and Q tend to zero and the amount of overestimate in
the computation of the outer approximation of the image of f by F tends to zero,
see Theorem 5.8 and Lemma 7.6 of [9]. We do not provide details here, because
even though the convergence results prove that the maximal invariant set can be
approximated arbitrarily closely if computations are performed on a sufficiently fine
scale, in practice we fix a priori a finest resolution in the phase space and the parameter
space with which we do our computations.

3.1. Constructing Conley-Morse graphs. Recall that we have assumed that
F satisfies A1. In addition, for the remainder of this section we assume that the set
B and the grid X are chosen in such a way that A1′ is satisfied.

A natural starting point for examining the global structure of both a dynam-
ical system and a directed graph is to look for recurrence. The recurrent set of
FQ : SQ−→→X is defined by

RQ := {G ∈ SQ | there exists a nontrivial path from G to G in SQ} ,

where a nontrivial path is any path of non-zero length, including the case a loop
from a vertex to itself. The recurrent set RQ is naturally partitioned into equivalence
classes {MQ(p) | p ∈ PQ} called combinatorial Morse sets according to the following
equivalence relation:
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G ' H if and only if there exists a path in FQ from G to H and a
path in FQ from H to G.

Since every node in SQ that lies on a cycle is an element of RQ, we can define a strict
partial order on the indexing set PQ by setting p >Q q if there exist G ∈ MQ(p),
H ∈MQ(q), and a path from G to H in FQ.

Observe that this construction implies that a combinatorial Morse decomposition
can be represented as a directed graph. Let MG(FQ) denote the acyclic directed graph
with vertices consisting of the elements of PQ and the minimal set of directed edges
p→ q which generate p >Q q under transitivity. The following proposition states that
given a combinatorial Morse decomposition for an outer approximation FQ, there is
a Morse decomposition of FQ such that MG(FQ) is the Morse graph over Q for the
Morse decomposition.

Proposition 3.2. Assume A1 and A1′ are satisfied. Let Q ∈ Q and let
{MQ(p) | p ∈ PQ} be the set of combinatorial Morse sets for FQ. If FQ

(
MQ(p)

)
⊂

BQ for all p ∈ PQ, then the acyclic directed graph MG(FQ) which represents the com-
binatorial Morse sets is a Morse graph over Q for the Morse decomposition of SQ
defined by

M(SQ) := {Inv (|MQ(p)| ×Q,FQ) | p ∈ PQ} .

Moreover, each |MQ(p)| is an isolating neighborhood for Inv |MQ(p)|.
Proof: By [9, Theorem 4.1], we know that |MQ(p)| ×Q is an isolating neighborhood
for FQ, and by [9, Corollary 4.2],

M(SQ) := {MQ(p) := Inv (|MQ(p)| ×Q,FQ) | p ∈ (PQ, >Q)}

is a Morse decomposition of SQ.

Remark 3.3. Observe that Proposition 3.2 implies that once an appropriate
combinatorialization of F has been computed, then for each Q ∈ Q a Morse graph
MG(FQ) over Q is determined which can be associated to a true Morse decomposition
M(SQ) for FQ, and this in turn provides a Morse decomposition M(Sλ) for fλ for
each λ ∈ Q. �

The algorithms used to compute the Conley-Morse graphs are discussed in greater
detail in Section 4. For the moment we remark that we use the algorithm presented
in Section 2.2 of [1] to compute the Morse graph MG(FQ). There are a variety of
algorithms for determining index pairs, see [8, 18, 19, 24], and in this paper we adopt
the approach of [19], see Remark 4.3. For systems defined in Rn and simplicial or
rectangular grids, there exist algorithms to compute the induced map on homology [8,
14, 20]. Hence for each Q ∈ Q the Conley-Morse graph CMG(FQ) can be determined
in a fairly general setting.

3.2. Comparing Conley-Morse graphs. We now turn to the question of com-
paring the dynamical information over different parameter regions via Conley-Morse
graphs. Recall that we assume that the grid Q has the simple intersection property.
Furthermore, we continue to assume that A1 and A1′ are satisfied. We also assume
that CMG(FQ) has been computed for each Q ∈ Q. We begin with a few definitions.

Definition 3.4. To each Q ∈ Q, there is an associated CMG(FQ). Consider
Q0, Q1 ∈ Q such that Q0 ∩ Q1 6= ∅. The clutching graph J (Q0, Q1) is defined to be
the bipartite graph with vertices PQ0 ∪PQ1 (the union of the vertices from MG(FQ0)
and MG(FQ1)) and with an edge (p, q) ∈ PQ0 × PQ1 if MQ0(p) ∩MQ1(q) 6= ∅.
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Observe that if every vertex in PQ0
in the clutching graph J (Q0, Q1) has a unique

edge, then we can define the clutching function

ιQ1,Q0
: PQ0

→ PQ1

by ιQ1,Q0
(p) := q for each edge (p, q) of J (Q0, Q1).

Definition 3.5. Consider the set of Conley-Morse graphs over the grid elements
of the parameter space, i.e. {CMG(FQ) | Q ∈ Q}. Let Q0, Q1 ∈ Q such that Q0∩Q1 6=
∅. If the clutching function ιQ1,Q0 : PQ0 → PQ1 is defined and gives a directed graph
isomorphism from MG(FQ0

) to MG(FQ1
), then we say that the Conley-Morse graphs

over Q0 and Q1, CMG(FQ0
) and CMG(FQ1

), are equivalent. The equivalence classes
of {CMG(FQ) | Q ∈ Q} with respect to the transitive closure of this relation are called
continuation classes.

Remark 3.6. We require that ιQ1,Q0 generate a directed graph isomorphism as
opposed to the weaker condition that ιQ1,Q0 be a bijection, because differences in the
partial order may indicate a difference in the dynamics. �

Proposition 3.7. Assume A1 and A1′ are satisfied. Let Q0, Q1 ∈ Q such
that Q0 ∩ Q1 6= ∅. If the clutching function ιQ1,Q0 : PQ0 → PQ1 is a directed graph
isomorphism then there exists a Morse decomposition

M(SQ0∪Q1
) = {MQ0∪Q1

(r) | r ∈ PQ0∪Q1
}

with admissible order >Q0∪Q1 such that its restriction is the same as the Morse de-
composition M(SQi) over Qi for each i = 0, 1. Specifically, there is a natural corre-
spondence πi : PQ0∪Q1

→ PQi such that

MQi

(
πi(r)

)
= MQ0∪Q1(r) ∩ (X ×Qi) for any r ∈ PQ0∪Q1 ,

and >Q0∪Q1
agrees with >Qi through the identification. Furthermore, the nonzero

eigenvalues associated to the index maps for pairs of corresponding Morse sets MQ0
(π0(r))

and MQ1
(π1(r)) are the same.

Proof: Define

PQ0∪Q1 = {(p, q) ∈ PQ0 × PQ1 | q = ιQ1,Q0(p)} ,

and the natural correspondence πi : PQ0∪Q1
→ PQi . Then one can introduce a well-

defined partial order >Q0∪Q1
on PQ0∪Q1

from the isomorphic partial order >Qi on
PQi , and πi becomes an order-preserving isomorphism.

Now define

MQ0∪Q1
(r) = MQ0

(
π0(r)

)
∪MQ1

(
π1(r)

)
.

It follows from the construction that the collection {MQ0∪Q1
(r) | r ∈ PQ0∪Q1

} forms
a Morse decomposition over Q0 ∪Q1. The result now follows from the sheaf property
of Morse decompositions and the continuation property of the Conley index.

Proposition 3.7 implies that if CMG(FQ0
) and CMG(FQ1

) belong to the same
continuation class then there is a path in the parameter space along which the un-
derlying Morse decompositions are related by continuation, and the Conley indices of
the corresponding Morse sets are isomorphic.

Remark 3.8. It is important to note that belonging to the same continuation
class is a weak equivalence relation. In particular, it is possible that λ0, λ1 ∈ Q ∈ Q
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and yet Sλ0
and Sλ1

are not topologically conjugate. Thus, membership in the same
continuation class does not imply equivalence on the level of conjugacy. Heuristically,
this is because we are studying the dynamics on the level of the grid elements and
differences in the dynamics that lie below this scale cannot be observed. Similarly, it
is possible that CMG(FQ0

) and CMG(FQ1
) lie in different continuation classes, but

the dynamics of fλ0
on SQ0

for λ0 ∈ Q0 and fλ1
on SQ1

for λ1 ∈ Q1 are topologically
equivalent. To see that this is the case consider λi = λ ∈ Q0∩Q1, but CMG(FQ0

) and
CMG(FQ1) do not belong to the same continuation class. The heuristic explanation
for this is that topological conjugacy is independent of the size of the dynamic struc-
tures, but the construction of F clearly depends on the size of the grid decomposition.

Finally, it is possible to construct examples in which CMG(FQ0
) and CMG(FQ1

)
belong to the same continuation class and Q0 ∩Q1 6= ∅, but ιQ1,Q0

is not a directed
graph isomorphism, or even ιQ1,Q0 may not be defined. This situation can arise from
lack of resolution in either the phase space or parameter space. In fact, in practice
(see Section 4.6) we employ a local subdivision algorithm that in principle reduces –
but does not necessarily eliminate – the occurrence of phenomenon of this type. �

The thesis of this paper is that, given grids for the phase space and parameter
space, a useful database for the global dynamics is a list of the continuation classes
and their relative connectivity. To be more precise we introduce the following notion.

Definition 3.9. Assume A1 and A1′ are satisfied. The associated continuation
graph CG(F) is a graph whose vertices are the continuation classes{(

CMG(j),Q(j)
)
|j = 1, . . . , J

}
where Q(k) ⊂ Q is the set of parameter boxes associated with the k-th continuation
class and CMG(k) = CMG(FQ) for some Q ∈ Q(k). Note that all Conley-Morse
graphs CMG(FQ) over Q ∈ Q(k) are isomorphic. There is an edge between the j-
th and k-th vertices in CG(F) if there exist Q ∈ Q(j) and Q′ ∈ Q(k) such that
Q ∩Q′ 6= ∅.

The continuation graph is our database. Of course, additional, problem specific
information can also be stored. However, as will be indicated in the context of the
density dependent Leslie model, this database provides an extremely compressed yet
useful means of describing the global dynamics over a broad range of parameter values.
We return to these issues when we use the database to investigate the Leslie model.

4. Building the database using rectangular grids. The results of Section 3
indicate how a combinatorialization of F leads to a database. In this section we
describe how a combinatorialization can be effectively computed, including details of
selected computational aspects of the method.

The optimal choice of a suitable grid is determined by the structure of X, Λ, and
B ⊂ X × Λ. For many applications Λ ⊂ Rm is a rectangular region, X = Rn, and B
is also a rectangular region, that is, B = R× Λ for some rectangular region R ⊂ Rn.
For convenience, we make this assumption, i.e. Bλ = R for all λ ∈ Λ, throughout the
rest of this paper. This leads to the use of a pair of rectangular grids

Q =

{
m∏
i=1

[
bi + qi

ζi
Ki
, bi + (qi + 1)

ζi
Ki

]
| qj ∈ {0, . . . ,Kj − 1}, j = 1, . . . ,m

}
(4.1)

where b, ζ ∈ Rm and K ∈ Zm,

X (d) =

{
n∏
i=1

[
ai + ki

ξi
2d
, ai + (ki + 1)

ξi
2d

]
| kj ∈ Z, j = 1, . . . , n

}
(4.2)
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where d ∈ Z+ and a, ξ ∈ Rn, and

B(d) := X (d)(R) ⊂ X (d).

The choices of K and d define the accuracy of computations, and the choices of a, b, ξ
and ζ are determined by the regions one wishes to study. The parameter d allows for
the use of an iterative multiscale method described later that is essential for efficient
computation of the dynamics.

4.1. Constructing an outer approximation. For each Q ∈ Q we construct

an outer approximation F (d)
Q : B(d)−→→X (d) as follows. For each grid element G ∈ B(d),

interval arithmetic [16] is used to compute a rectangular box β(G) which contains
the image f(G,Q). More precisely, the edges of the rectangular grid element G ×Q
(which are intervals) are inserted directly into the formula for f in place of correspond-
ing variables, and the value of f(G,Q) is evaluated using interval arithmetic which
provides a rigorous result in the form of a product of intervals. For each G ∈ B(d)

define

F (d)
Q (G) :=

{
H ∈ X (d) | H ∩ β(G) 6= ∅

}
and observe that f(G,Q) ⊂ int |F (d)

Q (G)|, see Figure 4.1. Thus, F (d)
Q is an outer

approximation as defined in (3.1).

Fig. 4.1. A rigorous enclosure of the image of each grid box (dark gray) is computed with
interval arithmetic (indicated by the dotted line), and then covered by grid boxes (light gray).

Having described the construction of F (d)
Q : B(d)−→→X (d), we turn to the need for

a multiscale approach. Observe that the number of grid elements in B(d) is 2nd,
and hence the size of the graph of FQ grows exponentially as a function either of
discretization size or dimension of the problem. However, we are only interested in
the largest closed subgraph of FQ on B(d), and thus we only use the restriction of FQ
to S(d)

Q , where |S(d)
Q | ×Q covers InvBQ which is often a small subset of BQ.

4.2. Iterative multiscale identification of the invariant set. To avoid un-
necessary computation, we use the following iterative multiscale approach motivated
by [7]. Let d0, d1, . . . , d` be an increasing sequence of positive integers. Fix Q ∈ Q.

Construct F (d0)
Q : B(d0)−→→X (d0). Following the algorithms in [1] we compute the max-

imal closed directed graph S(d0)
Q in F (d0)

Q . Define Y(d1) ⊂ B(d1) to be the grid for

|S(d0)
Q |. Construct F (d1)

Q : Y(d1)−→→X (d1). We repeat the construction of S(di)
Q and

F (di)
Q : Y(di)−→→X (di) until i = l. Note that since we assume A1′, Proposition 3.1
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Fig. 4.2. Computation of S(di)Q by means of gradual refinements. In the first row, the lines

indicate the subdivision of the region X into 4n boxes for n = 1, . . . , 4. No more lines are added
in the second row to keep the picture clear. The third row shows a magnified fragment of the

region S(di)Q with the lines corresponding to those in the second row. Parameter box Q coordinates:

(q1, q2) = (20, 33).

implies that Inv
(
|S(d`)| ×Q

)
= Inv

(
|B(d0)
Q | ×Q

)
.

Example 4.1. To put the above construction into perspective consider the Leslie
model (1.3) where we fix p = 0.7. Set

Λ := {(θ1, θ2) ∈ [8, 37]× [3, 50]} ,
R := [−0.001, 320.056]× [−0.001, 224.040] for all λ ∈ Λ.

The grid Q in Λ is given by (4.1) with m = 2, b1 = 8, b2 = 3, ζ1 = 29, ζ2 = 47,
and K1 = K2 = 50, while the grids X (d) in X = R2 are given for d = 1, . . . , 12
by (4.2) with n = 2, a1 = a2 = −0.001, ξ1 = 320.057 and ξ2 = 224.041. Figure 4.2

indicates the evolution of the sets S(d)
Q for d = 1, . . . , 12, where Q ∈ Q is given by

(q1, q2) = (20, 33) in (4.1).

Remark 4.2. Observe that the diameter of |F (d)
Q (G)| depends on the diameter

of β(G), which in turn is dependent both on the diameter of G and Q. Currently, we
fix the grid Q and then iteratively refine X (d). Thus, the size of Q ∈ Q puts an upper
bound on the number of iterative steps that lead to a useful refinement of the outer

approximation F (d)
Q : Y(d)−→→X (d). A more sophisticated approach would involve an

iterative method for both the phase space and the parameter space. �
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Remark 4.3. By Proposition 3.1, SQ ⊂ |S(di)
Q | × Q for i = 0, . . . , l. Moreover,

since S(di)
Q is the maximal closed subgraph, and combinatorial Morse sets are closed

subgraphs, each combinatorial Morse set MQ(p) for p ∈ PQ is contained in S(di)
Q for

each i = 0, . . . , `. If F
(
MQ(p)

)
⊂ BQ for all p ∈ PQ, then by Proposition 3.2, the

neighborhoods |MQ(p)| isolate Morse sets in a Morse decomposition of SQ. Moreover,
since Morse sets are recurrent, the condition F

(
MQ(p)

)
⊂ BQ implies that

FQ
(
FQ(MQ(p)) \MQ(p)

)
∩MQ(p) = ∅, (4.3)

where FQ : X → X is an outer approximation. As described in the next section,
this allows us to readily compute the Conley index of Inv (|MQ|). If the condition
F
(
MQ(p)

)
⊂ BQ is not satisfied, then we cannot compute the index without extend-

ing our computation of FQ outside of BQ, and this situation is reported in the output
of our computations. �

4.3. Conley-Morse graph computation. Given F (d`)
Q : S(d`)

Q
−→→X (d`) the al-

gorithm in [1, Section 2.2] is used to compute the Morse graph MG(FQ), where

FQ := F (d`)
Q . To produce the Conley-Morse graph over Q requires the computa-

tion of the Conley indices of each Morse set. This is done using the algorithms in
[14, 20] and the easy observation that if MQ(p) is a combinatorial Morse set for
FQ and the condition (4.3) is satisfied for FQ : MQ(p) ∪ FQ(MQ(p))−→→X , then(
MQ(p)∪FQ(MQ(p)), FQ(MQ(p)) \MQ(p)

)
is a combinatorial index pair as in

[19, 20]. In practice, there are memory constraints associated with these algorithms
for computing the Conley index. In the computations performed for this paper we
did not attempt to compute the Conley index if the index pairs generated contained
more than 400,000 boxes.

Example 4.4. Returning to Example 4.1, the computed Conley-Morse graph
overQ is indicated in Figure 4.3(a). The three Morse setsMQ(pi), i = 2, 4, 5, indicated
by the shaded boxes have no nonzero eigenvalues. The numbers in parentheses indicate
the number of boxes that define each combinatorial Morse setMQ(pi). Remark 2.3.2
raises the possibility – but does not imply – that MQ(pi) = ∅ for i = 2, 4, 5. This
possibility is reinforced by the observation that there are very few boxes in MQ(pi)
for i = 2, 4, 5.

To test whether the Morse sets with trivial index may, in fact, be numerical
artifacts we need to be able to study them at a finer level of resolution.

4.4. Combinatorial Morse set refinement. Observe that ifMQ(p) is a com-

binatorial Morse set determined by an outer approximation F (d)
Q , then the restriction

F (d)
Q : MQ(p)−→→MQ(p) is a closed graph. Choose d′ greater than d. Define Y(d′)

Q to

be the grid for |MQ(p)|, construct F (d′)
Q : Y(d′)

Q
−→→Y(d′)

Q , and compute S(d′)
Q , the max-

imal closed directed graph in F (d′)
Q . By Proposition 3.1 all the recurrent dynamics of

MQ(p) is contained in S(d′)
Q , because

MQ(p) = Inv
(
|S(d′)
Q |, FQ

)
= Inv

(
|MQ(p)|, FQ

)
.

4.5. Conley-Morse graph reduction test. The first step is to apply the Com-
binatorial Morse Set Refinement algorithm with d = d` and d′ = d` + 1. There are
two possible outcomes.
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p0 : 2 {-1}   (1)

p1 : 1 {-0.5-0.866i, -0.5+0.866i, 1}   (1457)

p4 : 0 (11)

p2 : 0 (8)

p3 : 0 {-0.5-0.866i, -0.5+0.866i, 1}   (4522)p6 : 0 {1}   (105052)

p5 : 0 (4)

(a)

p0 : 2 {-1}   (1)

p1 : 1 {-0.5-0.866i, -0.5+0.866i, 1}   (1457)

p2 : 0 {-0.5-0.866i, -0.5+0.866i, 1}   (4522) p3 : 0 {1}   (105052)

(b)

Fig. 4.3. (a) The Conley-Morse graph computed over the parameter box Q defined by
(q1, q2) = (20, 33) and d` = 12. The three Morse sets indicated by the shaded boxes have no nonzero
eigenvalues. (b) The trivially reduced Conley-Morse graph over Q.

1. S(d′)
Q = ∅. In this case MQ(p) = ∅, so we remove the vertex p and replace

CMG(F (d`)
Q ) with its trivial reduction.

2. S(d′)
Q 6= ∅. In this case there are two other options: Either we halt and accept

CMG(F (d`)
Q ) as the appropriate Conley-Morse graph over Q, or we apply

the Combinatorial Morse Set Refinement procedure to S(d′)
Q and repeat the

process.

In practice there are two constraints to this procedure. The first is the number of
iterations before accepting that a Morse set with trivial index remains in the Conley-
Morse graph. In the computations performed for this paper we stopped after three
iterations. The second arises from memory considerations. If the combinatorial Morse
set consists of a large number of boxes, then representing it on a finer grid can produce
an impractically large set. In the computations performed for this paper we did not
apply the Combinatorial Morse Set Refinement to sets consisting of more than 40,000
boxes.

Example 4.5. Continuing with Example 4.4, after applying one iteration of the
Conley-Morse Graph Reduction Test with d′ = 13 it is determined that MQ(pk) = ∅,
for k = 2, 4, 5. This leads to the trivially reduced Conley-Morse graph indicated in
Figure 4.3(b). The sets MQ(pk) for the reduced Conley-Morse graph over Q are
indicated in Figure 4.4.

Recall that the desired database is a continuation graph. The first step is to
create the continuation classes. Observe that over each Q ∈ Q we have computed the
trivially reduced Conley-Morse graphs CMG(FQ). We still retain the information of
the boxes {MQ(p) | p ∈ PQ} which define the vertices of CMG(FQ) and of course the
ordering >Q between the vertices.

4.6. Continuation graph construction. Let Q0 and Q1 be grid elements such
that Q0 ∩ Q1 6= ∅. In order to determine whether CMG(FQ0) and CMG(FQ1) are
equivalent, we proceed with the following steps:

1. If the cardinalities of PQ0 and PQ1 differ then Q0 and Q1 do not belong to
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Fig. 4.4. The sets MQ(pi), i = 0, 1, 2, 3, for the reduced Conley-Morse graph from Fig-
ure 4.3(b). The color coding in the two figures match, thus the green and red regions indicate
attracting neighborhoods for fλ for all λ in the parameter box Q defined by (q1, q2) = (20, 33) and
d` = 12. The set MQ(p0) covers the origin and consists of a single box at the lower left corner of
the picture and is barely visible at this resolution.

the same continuation class.
2. If the cardinalities of PQ0 and PQ1 agree, then we construct the clutching

graph (see comment preceding Definition 3.5). If the clutching graph de-
fines a directed graph isomorphism between the Morse graphs MG(FQ0

) and
MG(FQ1

), then the Conley-Morse graphs CMG(FQ0
) and CMG(FQ1

) over
Q0 and Q1 belong to the same continuation class.

3. The clutching graph can fail to define a directed graph isomorphism between
the Morse graphs MG(FQ0) and MG(FQ1) in several ways:
• The partial orders do not agree, in which case CMG(FQ0

) and CMG(FQ1
)

are not identified as belonging to the same continuation class.
• There is a vertex with no edge in the clutching graph, in which case

CMG(FQ0
) and CMG(FQ1

) do not belong to the same continuation
class.

• There is a vertex with two or more edges in the clutching graph. Recall
that the edge (p, q) is in the clutching graph if MQ0

(p) ∩MQ1
(q) 6= ∅.

Assume the edges at the vertex p are given by {(p, qi) | i = 1, . . . , I}.
Then we apply several iterations of the Combinatorial Morse Set Refine-
ment algorithm toMQ0(p) andMQ1(qi), i = 1, . . . , I. If after perform-
ing this at each vertex for which there are multiple edges, the clutching
graph reduces to a directed graph isomorphism, then CMG(FQ0

) and
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CMG(FQ1
) belong to the same continuation class; otherwise CMG(FQ0

)
and CMG(FQ1

) belong to different continuation classes.
This procedure applied to all pairs of adjacent boxes in the parameter space

results in the set of continuation classes and the continuation graph which defines
the database having been determined. Note that although this procedure admits the
situation in which two Conley-Morse graphs are identified as belonging to the same
continuation class even if the clutching function does not define a directed graph
isomorphism, in such a case the conclusion of Proposition 3.7 still holds true, because
the clutching function of the refined combinatorial Morse decompositions does provide
the isomorphism.

5. Database for the Leslie model with p = 0.7. In this section we present
the results of the computational procedure described in Section 4 applied to the
density dependent Leslie model (1.3) when p = 0.7. The procedure was implemented
in an efficient program written in C++. An interactive presentation of the results of
computations which we did can be found at http://chomp.rutgers.edu/database/,
and the source code of the general purpose software used to compute this database
has also been made freely available.

Observe that fixing p = 0.7 results in a two-dimensional parameter space. We
compute the continuation graph over the parameter space

Λ := {(θ1, θ2) ∈ [8, 37]× [3, 50]} .

We choose an equipartitioned 50 × 50 grid for this parameter space given by (4.1)
with m = 2, b1 = 8, b2 = 3, ζ1 = 29, ζ2 = 47, and K1 = K2 = 50.

Recasting the Leslie model in the general form of (1.2) and recalling that x1 and
x2 represent population sizes, we are interested in studying F : (R+)2×Λ→ (R+)2×Λ
where R+ := [0,∞).

There are two essential observations.
Remark 5.1. For λ = (θ1, θ2), define

Bλ :=
{

(x1, x2) ∈ (R+)2 | 0 ≤ x1 ≤ 10(θ1 + θ2)e−1, 0 ≤ x2 ≤ 10p(θ1 + θ2)e−1
}
.

A direct calculation shows that F 2
(
(R+)2×Λ

)
⊂ B :=

⋃
λ∈ΛBλ×{λ}. In particular,

any invariant set for the Leslie model on (R+)2 must lie in B. Furthermore, F (0, λ) =
(0, λ) and {0} × (0,∞) 6⊂ fλ

(
(R+)2

)
. �

Remark 5.2. There are some technical reasons why we do not compute on the
set B ⊂ (R+)2 × Λ as defined in Remark 5.1. First, F (0, λ) = (0, λ) so that B is
not an isolating neighborhood as a subset of R2 × Λ. While this would not violate
A1 restricted to (R+)2 × Λ, it does imply that the Conley index of the invariant set
{0} computed restricted to B would not be capable of measuring the hyperbolicity of
the origin. Our approach to this problem is pragmatic, we can explicitly compute the
eigenvalues at the origin as

µ± =
θ1 ±

√
θ2

1 + 4pθ2

2
.

Observe that restricted to Λ, µ+ > 1. This information can then be used to compute
the index analytically. However, this is not the only reason not to compute on B.

As exhibited in the figures in the next section, the maximal invariant set in B
comes very close to the coordinate axes, even though it does not touch the axes by

http://chomp.rutgers.edu/database/
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Remark 5.1. This causes a problem again in isolating and computing the Conley index
even for some Morse sets that do not include the origin, when the computations are
restricted to the first quadrant.

Given these issues, we have chosen to compute on a larger rectangle

R := [−0.001, 320.056]× [−0.001, 224.040]

in R2 and consider the origin analytically. With respect to the dynamics on R2, the
origin undergoes a period doubling bifurcation since µ− < −1 if θ2 >

1
pθ1 + 1 and

−1 < µ− < 0 if θ2 <
1
pθ1 + 1. The eigenvector v+ associated with µ+ can be chosen

to lie in the positive orthant. The eigenvector associated with µ− lies outside the
positive cone. Thus, this period doubling bifurcation has no direct impact on the
ordering of the Morse decomposition of Sλ := Inv (R, fλ). Combining this with the
observation that µ+ > 1, one can conclude that for any λ ∈ Λ the origin is always a
repeller for Sλ.

These observations imply that, even though the condition A1′ does not hold near
the period-doubling bifurcation, this bifurcation plays no role in the construction
of the continuation classes. Moreover, the Conley index of the origin provides no
information, and hence can be ignored in the database. �

Using the grids defined in Example 4.1, we compute the continuation graph using
the iterative method in Section 4.2 on the grids B(d) for d = 6, . . . , 12. The output is
indicated in Figure 5.1. Since there is no natural order on the continuation classes,
we have labeled them from “Class 1” to “Class 17”, according to their volume in
parameter space, beginning with the largest region.

Class 1
[890 boxes]

Class 2
[759 boxes]

Class 3
[251 boxes]

Class 4
[196 boxes]

Class 5
[88 boxes]

Class 6
[73 boxes]

Class 7
[66 boxes]

Class 8
[65 boxes]

Class 9
[50 boxes]

Class 10
[43 boxes]

Class 11
[12 boxes]

Class 12
[2 boxes]

Class 13
[1 box]

Class 14
[1 box]

Class 15
[1 box]

Class 16
[1 box]

Class 17
[1 box]

Fig. 5.1. The continuation graph computed for the density dependent Leslie population
model (1.3) with Λ = {θ = (θ1, θ2) ∈ [8, 37]× [3, 50]}, and p = 0.7. The label of each node indi-
cates the class number and the number of boxes in Q(j), and the border color agrees with Figure 5.2.

The advantage of the continuation graph is that it is dimension independent, and
thus it can be used to organize the information about the dynamics independent of
the dimension of the parameter space. In this example, however, the parameter space
is two-dimensional, thus we also present a continuation diagram in Figure 5.2 where
each continuation class with more than one parameter box is identified by some color.
Thus, it is easy to see the sets Q(j) ⊂ Q which define the parameter values for which
the Conley-Morse graphs are valid.

The Conley-Morse graphs associated to the continuation classes, which are the
basic items of the database, are shown in the next subsection.
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Fig. 5.2. Continuation diagram computed for the two-dimensional Leslie population model
with θ1 ∈ [8, 37], θ2 ∈ [3, 50], p = 0.7. Grid sizes: 50 × 50 in the parameter space for (θ1, θ2), and
4096× 4096 in the phase space [−0.001, 320.056]× [−0.001, 224.040].

5.1. Catalog of continuation classes. This section contains a list of Conley-
Morse graphs and Morse decompositions at selected parameter boxes for all the con-
tinuation classes found for the two-dimensional Leslie model with two varying param-
eters, as discussed above.

Recall that each node in a Conley-Morse graph is labeled

pk : n→ {∗}

where k labels the Morse set, {∗} indicates the nonzero eigenvalues, and n indicates
the level of homology of the index map on which these eigenvalues arise. If the k-th
Morse set has no nonzero eigenvalues then we write

pk : 0 .

Since, as indicated in Remark 5.2, the origin is an exceptional Morse set, we
indicate it with a shaded box and do not include any index information. The boxes
are color coded to match the combinatorial Morse sets that are shown in the right
panel.

We do not consider the figures showing the combinatorial Morse sets to be part
of the database for the following reasons:

1. The boxes that make up the combinatorial Morse sets will, in general, be
different for each Q ∈ Q.

2. For higher dimensional problems visualizing the combinatorial Morse sets
becomes impractical if not impossible.

3. Storing the combinatorial Morse sets becomes prohibitive for higher dimen-
sional problems.

4. We do not have a method for directly querying the combinatorial Morse sets.
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p2 : origin

p0 : 1 {1}, 0 {1}

p1 : 2 {1}

1. The Conley-Morse graph CMG(1) and the sets M(p) at the box (35, 32).

p1 : origin

p0 : 0 {1}

2. The Conley-Morse graph CMG(2) and the sets M(p) at the box (10, 13).

p2 : origin

p1 : 1 {-0.5-0.866i, -0.5+0.866i}

p0 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

3. The Conley-Morse graph CMG(3) and the sets M(p) at the box (18, 12).
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p3 : origin

p2 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 {-0.5-0.866i, -0.5+0.866i, 1} p0 : 0 {1} 

4. The Conley-Morse graph CMG(4) and the sets M(p) at the box (20, 22).

p2 : origin

p1 : 1 {-1}

p0 : 0 {-1, 1}

5. The Conley-Morse graph CMG(5) and the sets M(p) at the box (0, 45).

p2 : origin

p1 : 0

p0 : 0 {1}

6. The Conley-Morse graph CMG(6) and the sets M(p) at the box (11, 11).
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p3 : origin

p1 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 2 {1}

p0 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

7. The Conley-Morse graph CMG(7) and the sets M(p) at the box (31, 22).

p2 : origin

p1 : 0

p0 : 0 {1}

8. The Conley-Morse graph CMG(8) and the sets M(p) at the box (27, 39).

p1 : origin

p0 : 0 {1}

9. The Conley-Morse graph CMG(9) and the sets M(p) at the box (31, 47).
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p1 : 2 {1}

p0 : NO ISOLATION

10. The Conley-Morse graph CMG(10) and the sets M(p) at the box (47, 2).

p3 : origin

p2 : 0 

p1 : 0 

p0 : 0 {1} 

11. The Conley-Morse graph CMG(11) and the sets M(p) at the box (22, 47).

p4 : origin

p3 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 

p0 : 0 {1} 

12. The Conley-Morse graph CMG(12) and the sets M(p) at the box (23, 49).
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p4 : origin

p3 : 1 {-0.5-0.866i, -0.5+0.866i, 1}

p2 : 0 {-0.5-0.866i, -0.5+0.866i, 1}

p1 : 0 

p0 : 0 {1} 

13. The Conley-Morse graph CMG(13) and the sets M(p) at the box (22, 45).

p2 : origin

p1 : 0

p0 : 0 {1}

14. The Conley-Morse graph CMG(14) and the sets M(p) at the box (26, 0).

p3 : origin

p1 : 0 p2 : 2 {1}

p0 : 1 {1}, 0 {1}

15. The Conley-Morse graph CMG(15) and the sets M(p) at the box (27, 0).
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p2 : origin

p1 : 0

p0 : 0 {1}

16. The Conley-Morse graph CMG(16) and the sets M(p) at the box (29, 1).

p2 : origin

p1 : 0

p0 : 0 {1}

17. The Conley-Morse graph CMG(17) and the sets M(p) at the box (31, 2).

5.2. Querying the database. The purpose of the database is to shed light on
the possible dynamics exhibited over a wide range of parameter values. To be effective
it must be able to be queried. Recall that the database consists of the continuation
graph as indicated in Figure 5.1. Thus, we have the following information at our
disposal:

(1) Associated with each node in the continuation graph we have:
– The Conley-Morse graph with the information provided in the left panel

of the catalog of continuation classes.
– The set of parameter values Q(k) associated with the continuation class.

(We have not listed Q(k) explicitly in this paper; however, this informa-
tion is presented graphically in Figure 5.2.)

(2) The edges of the continuation graph indicating which continuation classes
intersect in parameter space.

Observe that the information in (2) can be recovered from the information in (1).
However, we believe it is more efficient to tabulate this information once and store it,
as opposed to recomputing it every time that a query is performed.
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The reader should also observe that this database is reasonably small. The con-
tinuation graph has 17 nodes and 33 edges. Each node contains a directed graph, but
these directed graphs typically only have 3 or 4 nodes and edges. Thus, memory is
not an issue with regard to storage of the database, and queries of the database are
fast. For the remainder of this section we demonstrate how the database can be used
to answer relevant questions about the dynamics of the Leslie model.

5.2.1. Multiple basins of attraction. A fundamental question for any dy-
namical system is whether there exist multiple basins of attraction. Our ability to
detect basins of attraction is based on the following proposition which follows from
the fact that FQ is an outer approximation [9].

Proposition 5.3. Assume A1. Furthermore, assume that S is a global attractor
for F . Let {MQ(p) | p ∈ PQ} be the set of combinatorial Morse sets for FQ. If q is
minimal with respect to the order >Q, that is, q 6> p for all p ∈ PQ, then M(q) is a
trapping region for FQ.

With regard to the density dependent Leslie model, Remark 5.1 implies that S is
the global attractor for the dynamics restricted to (R+)2. Therefore, the existence of
multiple disjoint trapping regions in (R+)2 implies the existence of multiple distinct
basins of attraction. Thus the following query identifies regions in parameter space
which support multiple basins of attraction.

Which continuation classes have a Conley-Morse graph with more
than one minimal element?

The result of this query is {Q(k) : k = 4, 12, 13}, and each of the graphs has

two minimal elements. Thus Q̂ :=
⋃
k=4,12,13Q(k) is a region in parameter space for

which there exist at least two basins of attraction. From the edges of the connection
graph we see that this defines a connected region (we can compute the homology of

Q̂ to conclude that it is contractible). Furthermore, there are 199 boxes in Q̂, which
represents approximately 8% of parameter space.

Remark 5.4. If we define Λ̂ ⊂ Λ to be the set of parameter values at which
fλ possesses multiple basins of attraction, then |Q̂| ⊂ int (Λ̂). The inclusion follows

from the fact that Q̂ is determined by the outer approximation F and thus if the
attractors are too close together then they cannot be separated by F . However, given
that in applications (1.3) is meant to represent a biological population, one would
expect noise in the system. Depending on the variance in the noise and the error
bounds associated with F , it is possible that |Q̂| is a more appropriate measure of the

experimentally observable attractors than Λ̂.

5.2.2. Persistence. The notion of persistence was introduced to account for the
fact that though a population model, such as the density dependent Leslie model, is
deterministic and predicts that it is impossible to have extinction, in practice popu-
lations are subject to stochastic perturbations. For a biologically motivated review
see [22], wherein the following three notions of persistence are discussed. We recast
these definitions to be specifically directed towards the Leslie model considered here.
Recall the sets Bλ for λ = (θ1, θ2) defined in Remark 5.1, and further define

◦
Bλ :=

{
(x1, x2) ∈ (R+)2 | 0 < x1 ≤ 10(θ1 + θ2)e−1, 0 < x2 ≤ 10p(θ1 + θ2)e−1

}
.

1. f is persistent despite frequent small perturbations if there exists a state x ∈
◦
Bλ

and ε > 0 such that there are no ε-chains from x to 0.
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2. f is persistent despite rare large perturbations if the origin is not in the closure

of
⋃
{ω(x) | x ∈

◦
Bλ}.

3. f is robustly persistent despite frequent small perturbations (respectively, ro-
bustly persistent despite rare large perturbations) if all maps g sufficiently near
f are persistent despite frequent small perturbations (respectively, persistent
despite rare large perturbations).

It is easy to check that f2(Bλ, λ) ⊂
◦
Bλ ∪{0}. Furthermore, by Remark 5.2 for

the parameter range Λ covered by the database, the origin is always unstable, and
thus for each λ ∈ Λ the Leslie model satisfies all these notions of persistence (if one
considers C1 perturbations of the model).

This statement is no longer true, however, if one fixes the size of the allowed
perturbations. This can be seen from the database via the following query:

Which continuation classes have a Conley-Morse graph CMG(k) in
which the box G containing the origin belongs to a combinatorial
Morse set M(p) which is a minimal element of CMG(k)?

Observe that for CMG(10) the minimal Morse set is shaded indicating that the box
containing the origin belongs to M(0). Observe that Q(10) contains 43 boxes of
parameter space and is in the region of the parameter space Λ corresponding to large
values of seed production of the first age class.

5.2.3. Cycle sets. One of the goals of population dynamics is to explain fluc-
tuations in population levels. We now explain how the database can be used for this
purpose. As indicated in Section 2.2, the Conley index can be used to understand
the structure of the dynamics within a Morse set. For a more complete description
of how this can be done the reader is referred to [8, 13]. Here we concentrate on the
existence of equilibria and periodic orbits. We begin by stating the following result
(see [8, 13]).

Proposition 5.5. Let f : Rn → Rn be continuous. If K is a hyperbolic periodic
orbit of f with minimal period τ ∈ N and unstable manifold of dimension d, then the
set of nonzero eigenvalues of the index map occur on the d-th homology groups and
are:

either
{
e2πinτ | n = 0, . . . , τ − 1

}
or

{
−e2πinτ | n = 0, . . . , τ − 1

}
.

The first case occurs if the action on the unstable manifold is orientation preserving
and the second case occurs if the action is orientation reversing.

Remark 5.6. The converse of Proposition 5.5 need not be true. A simple
counterexample can be found by considering the logistic equation fλ(x) = λx(1− x)
for λ ≈ 3.0 and the isolating neighborhood N = [0.6, 0.7]. For λ < 3.0, the maximal
invariant set is a unique stable hyperbolic fixed point and thus the nonzero eigenvalues
are {1} on the 0-th homology group. However, for λ > 3.0 the maximal invariant set
contains an unstable fixed point, a stable periodic orbit of period two, and a connecting
orbit from the fixed point to the periodic orbit. Consider, however, the logistic map
as a population model with a small amount of noise. At parameter values λ ≈ 3.0, an
observer would detect that orbits converge to the neighborhood N , but would not be
able to distinguish the existence of the period two orbit. Thus, from the point of view
of an experimentalist, it is conceivable that it is more useful to identify the invariant
set inside N with a fixed point. This leads us to the following definition.

Definition 5.7. Let g : Z → Z be a continuous map. An isolated invariant
set S is a T -cycle set if there exist T disjoint, compact regions N1, . . . , NT such that
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S = Inv (N, g), where N :=
⋃T
i=1Ni is an isolating neighborhood, and

g(Ni) ∩N ⊂ Ni+1, i = 0, . . . T − 1,

where N0 = NT . Moreover, S is an attracting T -cycle set if g(Ni) ⊂ Ni+1 for i =
0, . . . , T − 1.

Heuristically the dynamics associated with a T -cycle set could resemble that of a
periodic orbit with minimal period T , but subject to perturbations.

Proposition 5.8. LetMQ be a combinatorial Morse set obtained using a rectan-
gular grid on the phase space. Let MQ = Inv

(
|MQ|, FQ

)
. Then the set of nontrivial

eigenvalues of the index map on the 0-th level of homology is

either ∅ or
{
e2πi kT | k = 0, . . . , T − 1

}
.

In the latter case, MQ is an attracting T -cycle set.
Proof. Since |MQ| is an isolating block [9], the work of [18] implies that there

exists an index pair for FQ of the form P = (P1, P0) where P1 = |MQ|.
Let MQ =

⋃J
j=1Nj where |Nj | are the disjoint components of P1. Let J =

{1, . . . , J}. Let I = {j ∈ J | |Nj | ∩ P0 = ∅}. Observe that

H0(N1, N0) ∼=
⊕
j∈J

H0

(
|Nj |, |Nj | ∩ P0

) ∼= ⊕
j∈I

H0

(
|Nj |, |Nj | ∩ P0

) ∼= ⊕
j∈I

Z[ξj ],

where ξj is the generator of H0

(
|Nj |, |Nj | ∩ P0

)
.

Consider j ∈ I. Since (P1, P0) is an index pair and |Nj | has no exit set associated
with it, this implies that FQ

(
|Nj |

)
⊂ |N`| for some ` ∈ J . If ` ∈ I, then FQP∗(ξj) =

ξ`. If ` 6∈ I, then FQP∗(ξj) = 0.
SinceMQ is a combinatorial Morse set, it is an equivalence class of the recurrent

set. Thus, if I 6= J , then FQ∗ is nilpotent on the 0-th level. In this case the set
of nonzero eigenvalues is ∅. If I = J , then FQP∗ restricted to the 0-th level is a
permutation matrix and the associated eigenvalues are roots of unit with T = J .

This remark leads us to propose the following query for identifying attracting
cyclic sets.

For a fixed τ ∈ {1, 2, 3, . . .}, which continuation classes have a Conley-
Morse graph whose minimal node has nonzero eigenvalues

{
e2πinτ |

n = 0, . . . , τ − 1
}

at the 0-th homology level?

The result of this query indicates that there is an attracting 1-cycle set for the
parameter values Q(k), k = 1, 2, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, an attracting 2-cycle set
at Q(k), k = 5, and an attracting 3-cycle set at Q(k), k = 3, 4, 7, 12, 13, 15.

Observe that this analysis also provides us with a better understanding of the
possible dynamics at those parameter values where we identified multiple basins of
attraction Q(k), k = 4, 12, 13. A T -cycle set is a very weak description of the dynam-
ics. Careful numerical studies such as those of [25] suggest the existence of chaotic
dynamics at some of the parameter values associated with the 3-cycle sets. Some of
this finer information can be also obtained using the Conley index. For example, each
2-cycle and 3-cycle set contains a period 2 and period 3 orbit, respectively (though
these orbits need not be stable). There are also Conley index techniques for extract-
ing entropy estimates and symbolic dynamics within Morse sets [11, 23, 5, 4]. The
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relevance of this information is problem dependent. However, to extract this infor-
mation will require refinements of the current algorithms being used to construct the
database.

As discussed in [3], attempting to match the dynamics of a deterministic model
to experimental data in which the presence of noise is to be expected requires an
understanding of not only the structure of attractors, but also of the unstable invariant
sets. This is because with sufficient time stochastic events will almost certainly push
the trajectory away from the attractors in which case the dynamics will be determined
by the stable and unstable manifolds of the unstable invariant sets. In the context of
the Leslie model, perhaps the most interesting cases in which to study the unstable
invariant sets is to identify the separatrices in the case of multiple basins of attraction.
This is done using the following type of query.

The minimal nodes in CMG(4) are 1, 0. Find the minimal node p
such that p > 1 and p > 0.

The result of this query is MQ(4)(2) for which the nonzero eigenvalues are
{
e2πin3 |

n = 0, 1, 2
}

which suggests the behavior of a period three orbit with a one-dimensional
orientable unstable manifold.

6. Database for the Leslie model. To some extent Section 5 is included for
pedagogical purposes. Our hope is that the continuation diagram, Figure 5.2, and
the fact that there are only 17 continuation classes provides the reader with a clear
indication of the potential use and applicability of the database. As discussed in the
derivation of (1.3), the density dependent Leslie model involves three parameters.
The computational procedures described in Section 4 are dimension independent, and
thus we can apply them to (1.3) over the parameter space

Λ := {(θ1, θ2, p) ∈ [8, 37]× [3, 50]× [0.5, 0.9]} .

We choose an equipartitioned 80 × 80 × 40 grid for this parameter space, given by
(4.1) with m = 3, b1 = 8, b2 = 3, b3 = 0.5, ζ1 = 29, ζ2 = 47, ζ3 = 0.4, K1 = K2 = 80,
and K3 = 40.

Recasting the Leslie model in the general form of (1.2) and recalling that x1 and
x2 represent population sizes, we are interested in studying F : (R+)2×Λ→ (R+)2×Λ
where R+ := [0,∞). Remarks 5.1 and 5.2 are still applicable and thus, as explained
in the previous section, for all parameter values λ ∈ Λ we compute on

R := [−0.001, 320.056]× [−0.001, 288.051]

and the grids X (d) in X = R2 are given for d = 1, 2, . . . by (4.2) with n = 2, a1 =
a2 = −0.001, ξ1 = 320.057 and ξ2 = 288.052.

With this input we compute the continuation graph using iteratively generated
grids X (d) in the phase space for d = 6, . . . , 12.

Using the techniques outlined in Section 4, a continuation graph was computed
in 5,225 CPU hours on a cluster based on AMD Opteron 248 processors with 4 GB of
memory per node. This results in a continuation graph with 92 vertices and 263 edges.
Because of the size of the graph its visual presentation is of limited use. Also, since we
are working with a three-dimensional parameter space and 256,000 parameter boxes,
there is no hope of presenting a continuation diagram in this paper. An attempt has
been made at the website http://chomp.rutgers.edu/database/ to use a series of
two-dimensional pictures of slices of the diagram, either as an animation or as a list

\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/bx/n/10 {\OT1/cmr/m/n/10 }\OT1/cmr/bx/n/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/bx/n/10 {\OT1/cmr/m/n/10 }\OT1/cmr/bx/n/10 \size@update \enc@update http://chomp.rutgers.edu/database/
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of consecutive images, to visualize the continuation diagram; an interested reader is
kindly invited to explore these results further. Although careful analysis of this kind
of visualization may shed light on the dynamics of interest, we would like to point out
that this approach will not work in higher dimensions, and is therefore of limited use.

Independent of how complicated the continuation graph is, however, the queries
from Section 5.2 can still be performed with equal ease and provide the following
results:

• There are parameter values associated with multiple basins of attraction.
– At Q(k), k = 6, 10, 34, 37, 51, 58, 59 (comprising 18,632 boxes in param-

eter space) one attractor is a 1-cycle set and the other attractor is a
3-cycle set. The index information suggests (there is no theorem to
guarantee this; however, visual inspection confirms this) that the sepa-
ratrix between the basins of attraction has the behavior of an unstable
3-cycle set.

– At Q(k), k = 15, 17 (comprising 221 boxes in parameter space) one
attractor is a 2-cycle set and the other attractor is a 3-cycle set. The
index information also suggests that the separatrix between the basins
of attraction has the behavior of an unstable 3-cycle set.

• Persistence is lost on the level of the computational grid for the parameter
values in Q(k), k = 7 (comprising 16,686 boxes in parameter space).

7. Final remarks. The presentation of this paper has focused on discrete time
dynamical systems. On a theoretical level it is clear that the same ideas apply to
dynamics generated by differential equations. In particular, if one considers a param-
eterized family of semiflows ϕ : [0,∞) × X × Λ → X and chooses a constant τ > 0,
then the time-τ map ϕτ = ϕ(τ, ·, ·) : X × Λ → X returns one to the setting of this
paper. On a practical level the issue is much more subtle. Typically, the semiflow is
defined in terms of solutions to a differential equation. Thus, constructing an outer
approximation requires rigorous numerical calculation of an enclosure of the forward
translation of a grid element. There are tools for doing this effectively (see in par-
ticular the work of the CAPD group [26]); however, the computational cost is clearly
much greater than the simple evaluation of a formula as was done in this paper. Fur-
thermore, if τ is chosen to be small, then ϕτ represents a perturbation of the identity.
In order to identify interesting dynamics in this case, the diameter of the grid on
phase space will need to be extremely small. On the other hand, if τ is chosen to
be large, then not only does the cost of evaluation of ϕτ on grid elements become
large, growing at least proportionally to τ , but also for a reasonable computational
cost, the error bounds on the images of the grid elements will be extremely large. An
important open problem is then how to choose, a priori, an appropriate size for τ .

Another obvious topic which has only been briefly discussed is the relationship
between the continuation classes and classical bifurcation theory. As was pointed
out in Remark 3.8, the boundaries between the continuation classes need not rep-
resent boundaries between different topological conjugacy classes of dynamics, and
vice versa. Using standard bifurcation analysis it is fairly easy to check that a period
doubling bifurcation occurs near the boundary between continuation classes 2 and 5
(see Figure 5.2). Similarly, a saddle-node bifurcation to a period three orbit occurs
within continuation class 6 as one passes from continuation class 2 to continuation
class 4. However, recognizing these bifurcations from the database and predicting
how the database will represent these bifurcations as a function of grid size in both
phase space and parameter space remains an open problem.



A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems 31

Acknowledgements: The authors thank anonymous referees for their careful
reading of the manuscript and their useful suggestions.

REFERENCES

[1] H. Ban and W. Kalies, A computational approach to Conley’s decomposition theorem, Journal
of Computational and Nonlinear Dynamics 1 (2006), pp. 312–319.

[2] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in
Mathematics Vol. 38, American Mathematical Society, Providence, R.I., 1978.

[3] J. M. Cushing, R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson, Non-
linear population dynamics: Models, experiments and data, J. Theoret. Biol. 194 (1998),
pp. 1–9.

[4] S. Day, R. Frongillo, and R. Treviño, Algorithms for Rigorous Entropy Bounds and Sym-
bolic Dynamics, SIAM J. Appl. Dyn. Syst., 7 (2008) pp. 1477-1506.

[5] S. Day, O. Junge, and K. Mischaikow, A rigorous numerical method for the global analysis
of infinite dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst. 3 (2004),
pp. 117–160.

[6] M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO – Set oriented
numerical methods for dynamical systems, B. Fiedler (ed.), Ergodic Theory, Analysis, and
Efficient Simulation of Dynamical Systems, pp. 145–174, Springer-Verlag, 2001.

[7] M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable man-
ifolds and global attractors, Numer. Math. 75 (1997), pp. 293–317.

[8] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational homology, volume 157 of
Applied Mathematical Sciences, Springer-Verlag, New York, 2004.

[9] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst, An algorithmic approach to
chain recurrence, Found. Comput. Math. 5 (2005), pp. 409–449.

[10] A. Lander, A calculus of purpose, PLoS Biology 2 (2004), pp. 712–714 (electronic).
[11] K. Mischaikow and M. Mrozek, Isolating neighborhoods and chaos, Japan J. Indust. Appl.

Math. 12 (1995), pp. 205–236.
[12] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof,

Bull. Amer. Math. Soc. (N.S.) 32 (1995), pp. 66–72.
[13] K. Mischaikow and M. Mrozek, Conley index, in Handbook of dynamical systems, Vol. 2,

pages 393–460. North-Holland, Amsterdam, 2002.
[14] K. Mischaikow, M. Mrozek, and P. Pilarczyk, Graph approach to the computation of the

homology of continuous maps, Found. Comput. Math. 5 (2005), pp. 199–229.
[15] J. Montgomery, Cohomology of isolated invariant sets under perturbation, J. Differential

Equations 13 (1973), pp. 257–299.
[16] R. E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.
[17] M. Mrozek, An algorithm approach to the Conley index theory, J. Dynam. Differential Equa-

tions 11 (1999), pp. 711–734.
[18] M. Mrozek, Index pairs algorithms, Found. Comput. Math. 6 (2006), pp. 457–493.
[19] P. Pilarczyk, A concurrent algorithm for the construction of Conley index pairs, in prepara-

tion.
[20] P. Pilarczyk and K. Stolot, Excision-preserving cubical approach to the algorithmic com-

putation of the discrete Conley index, Topology Appl. 155 (2008), pp. 1149–1162.
[21] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index,

Ergodic Theory Dynam. Systems 8 (1988), pp. 375–393.
[22] S. J. Schreiber, Persistence despite perturbations for interacting populations, J. Theoret. Biol.

242 (2006), pp. 844–852.
[23] A. Szymczak, The Conley index and symbolic dynamics, Topology 35 (1996), pp. 287–299.
[24] A. Szymczak, A combinatorial procedure for finding isolating neighborhoods and index pairs,

Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), pp. 1075–1088.
[25] I. Ugarcovici and H. Weiss, Chaotic dynamics of a nonlinear density dependent population

model, Nonlinearity 17 (2004), pp. 1689–1711.
[26] Computer Assisted Proofs in Dynamics group, http://capd.ii.uj.edu.pl/.

http://capd.ii.uj.edu.pl/

