
A Note on Using the CHomP

C++ Library Interface

Pawe l Pilarczyk

August 9, 2007

Abstract

This note provides some very basic information on how to use the C++
interface to a few functions available in the CHomP library which allow
to compute the homology of cubical sets, as well as the homomorphism
induced in homology by a combinatorial cubical multivalued map.

1 Introduction

There are several programming interfaces included in the CHomP library for
direct access to the homology computation functions from a program written
in the C++ programming language. In professional computations, this saves a
lot of time that would be wasted if one first saves the data to files, and then
runs the programs chomp or homcubes. Here we will introduce a few most basic
interfaces.

2 The Basic CHomP Library Interface

The basic CHomP Library interface allows one to use the homology computation
engines which are available in the executable program chomp directly from a
program in C++. The set of cubes must be prepared as a bitmap (explained
below). The engine can be chosen by giving its name, exactly like in the case
of the chomp program.

2.1 Binary Bitmaps for the Basic Interface

An n-dimensional bitmap that represents a full cubical set can be stored in a
memory buffer directly. Bit set to 1 means that the corresponding (hyper)cube is
present in the cubical set, bit set to 0 means that the corresponding (hyper)cube
does not belong to the cubical set. A rectangular area in Rd of the size n1×· · ·×
nd is stored in n1 · · ·nd consecutive bits of contiguous memory. For technical
reasons, n1 must be a multiple of 32 on 32-bit machines, and a multiple of 64 on
64-bit machines. Each byte represents 8 consecutive cubes, the lower bits of the

1

Figure 1: Sample bitmap encoded as a sequence of bytes. Bit masks for bits are
indicated for each column.

byte represent cubes to the left (see Figure 1 for an illustration). The first bit in
the bitmap represents cube (0, . . . , 0), the first n1 bits represent the cubes whose
first coordinate changes from 0 to n1 − 1, and all the other coordinates are 0.
These bits are followed by n1 bits which represent cubes whose second coordinate
is 1. The bits that represent all the cubes in the plane {x3 = 0, . . . , xd = 0} are
followed by bits which represent cubes for which x3 = 1, and so on.

The interface procedure for computing the homology of a full cubical set
represented by means of a bitmap is as follows:
void ComputeBettiNumbers (const void *buffer, int *sizes, int dim,

int *result, const char *engine = 0, const int *wrapping = 0,

bool quiet = false);

The C++ code below illustrates a sample program that computes the homol-
ogy of the bitmap depicted in Figure 1 using the function ComputeBettiNumbers.

Program 1 Homology Computation of a Bitmap
01 #include <iostream>

02 #include "capd/homengin/homology.h"

03

04 int main ()

05 {
06 const int dim = 2;

07 int sizes [] = {32, 3};
08 char buffer [] = {
09 ’\xFC’, ’\xFF’, ’\xFF’, ’\xC3’,
10 ’\x1E’, ’\x18’, ’\xC0’, ’\x87’,
11 ’\xF8’, ’\xFF’, ’\xFD’, ’\x3F’,
12 };
13

14 const char ∗engine = 0;

15 bool quiet = false;

16

17 int betti [dim + 1];

18 ComputeBettiNumbers (buffer, sizes, dim, betti, engine, quiet);

19 for (int i = 0; i <= dim; ++ i)

20 std::cout << (i ? " " : "") << betti [i];

21 std::cout << ’\n’;
22 return 0;

23 }

2

2.2 Cubical Sets for the Basic Interface

The class CubicalSet is a simple interface for creating and manipulating a
bitmap representation of a full cubical set. To create an object of this class, one
needs to declare the range of coordinates of cubes. For the area

[n−1 , n
+
1]× · · · × [n−d , n

+
d]

one must create the object CubicalSet and provide the numbers d, n−1 , . . . , n
−
d ,

n+
1 , . . . , n

+
d . A cube is added to the bitmap with the function Add, a cube can be

removed with the function Delete. Note that since full cubes are represented
by their vertices with minimal coordinate values, the numbers (k1, . . . , kd) sent
to these functions will satisfy the inequalities n−i ≤ ki < n+

i . The homology of
the cubical set can be computed with the function

void ComputeBettiNumbers (const CubicalSet &s,

int *result, const char *engine = 0, bool quiet = false);

An example application of this interface is illustrated by the following pro-
gram:

Program 2 Using the class CubicalSet
01 #include <iostream>

02 #include "capd/homengin/cubiset.h"

03

04 int main ()

05 {
06 int left coords [] = {-6, -5, 0};
07 int right coords [] = {6, 1, 4};
08 CubicalSet Q (left coords, right coords, 3);

09

10 int cube1 [] = {1, -5, 0};
11 Q. Add (cube1);

12 int cube2 [] = {5, -2, 2};
13 Q. Add (cube2);

14

15 int betti [4];

16 ComputeBettiNumbers (Q, betti, "MM CR", true);

17 for (int i = 0; i < 4; ++ i)

18 std::cout << (i ? " " : "") << betti [i];

19 std::cout << ’\n’;
20 return 0;

21 }

3

3 The Advanced CHomP Library Interface

The general interface to the CHomP library corresponds to using the engine PP
in the program chomp. However, the functionality of the C++ interface is wider
than using the pre-compiled software programs.

There are classes for representing full cubes and full cubical sets, elementary
cubes (cubical cells) and cubical complexes, as well as combinatorial cubical
multivalued maps. There are also functions for the homology computation of
all these kinds of objects. Moreover, operators << and >> allow to read these
objects from input streams or write to output streams in the same format as used
by the CHomP programs. Almost all the code is defined within the namespace
chomp::homology.

The classes described below represent cubical sets with respect to the uni-
form integral lattice in Rd. The classes are defined as templates whose param-
eter is the integer type to be used for storing the coordinates. By default, the
type coordinate is used which is equivalent to short int and corresponds to
16-bit integers. This choice conserves memory, because in most applications
there is no need to use numbers outside the range [−32768, 32767]. However,
wider types can also be used if necessary. Please, refer to the source code for
more information.

The homology groups Hq are finitely generated abelian groups. Each such
group is represented as the direct sum

(1) Hq ' Z⊕ · · · ⊕ Z︸ ︷︷ ︸
βq

⊕Zp1 ⊕ · · · ⊕ Zpk
.

In the library interface to the CHomP software, the sequence of homology groups
(H0, . . . ,Hn) is represented by an array of chains. The coefficient 1 in the chain
corresponds to one group Z in (1); the number of such coefficients is the q-th
Betti number βq. The coefficients larger than 1 correspond to the torsion groups
Zpi

in (1). In fact, the user of the CHomP library doesn’t need to know the
actual structure of these chains or to access them directly, because convenient
functions are available for extracting the Betti numbers (BettiNumber) and the
torsion coefficients (TorsionCoefficient).

3.1 Full Cubes

The class Cube is used to represent a full cube in Rd. The class has a constructor
from an array of coordinates and the dimension of the cube. The class method
coord extracts these coordinates to an array, and the method dim returns the
dimension of the cube.

A set of cubes is represented by the class SetOfCubes. A cube can be added
to this class with the method add, removed with the method remove. The
verification of whether a given cube already belongs to the cubical set is very
fast, as it uses the hashing technique; it is done by the method check.

The homology groups of a full cubical set X or the relative homology groups
of the pair (X,A) is computed by the function Homology, as illustrated in Pro-

4

gram 3. By the way, this program is equivalent in what it does to Program 2.
Note that in the CHomP library there are several functions with the same name
Homology but different arguments, as it will be shown in the next subsection.

Program 3 Homology computation with the Advanced CHomP Interface.
01 #include <iostream>

02 #include "chomp/homology/homology.h"

03

04 using namespace chomp::homology;

05

06 int main ()

07 {
08 coordinate coords1 [] = {1, -5, 0};
09 Cube Q (coords1, 3);

10 SetOfCubes S;

11 S. add (Q);

12 coordinate coords2 [] = {5, -2, 2};
13 S. add (Cube (coords2, 3));

14

15 Chain ∗hom = 0;

16 int maxLevel = Homology (S, "S", hom);

17 for (int q = 0; q <= maxLevel; ++ q)

18 std::cout << (q ? " " : "") << BettiNumber (hom [q]);

19 std::cout << ’\n’;
20 delete [] hom;

21 return 0;

22 }

It is also possible to compute the homology generators. For that purpose, an-
other function Homology should be used, which in addition to homology groups
also saves the computed generators in terms of chains and related cubical cells.
This will be discussed in the case of cubical cells in the next subsection, for full
cubical sets it is very similar.

For computing relative homology of (X,A), an alternative function Homology
must be used which takes the set of cubes A as an additional argument.

3.2 Cubical Cells

The class CubicalCell is used to represent an elementary cube in Rd. It has
a constructor from an object of the class Cube which creates a cubical cell that
corresponds to the full cube, a constructor from two arrays of coordinates which
creates a cell with given opposite corners (one with minimal, and the other with
maximal coordinates), and a constructor of a boundary cell.

A cellular complex based on on cubical cells is represented by the class
CubicalComplex. A cubical cell can be added to this complex by the method
add. The dimension of the complex is obtained by the method dim. The set
of cells of the given dimension is retrieved by using the operator []. For the
purpose of homology computation, all the faces of cells that belong to the cellular
complex are automatically added during the computation, so there is no need
to generate them beforehand and add to the complex explicitly.

The following example program shows how to create a simple cellular com-
plex and how to compute its homology. Additionally, the homology generators

5

are also computed. This program uses standard CHomP Library interface rou-
tines to show the homology groups to the standard output stream, as well as the
comptued homology generators. Note that each homology generator is a chain
which can be understood as a formal combination of cubical cells with integral
coefficients.

Program 4 Computation of homology and generators of a cubical complex.
01 #include <iostream>

02 #include "chomp/homology/homology.h"

03

04 using namespace chomp::homology;

05

06 int main ()

07 {
08 coordinate left [] = {1, 2, 0};
09 coordinate right [] = {2, 2, 1};
10 CubicalCell Q (left, right, 3);

11 CubicalComplex C;

12 C. add (Q);

13

14 Chain ∗hom = 0;

15 Chain ∗∗gen = 0;

16 int maxLevel = Homology (C, "C", hom, &gen);

17 ShowHomology (hom, maxLevel);

18 ShowGenerators (gen, hom, maxLevel);

19

20 delete [] hom;

21 for (int i = 0; i <= maxLevel; ++ i)

22 delete (gen [i]);

23 delete [] gen;

24 return 0;

25 }

For computing relative homology of the pair of cellular complexes (X,A), an
alternative function Homology must be used which takes the cubical complex A
as an additional argument.

3.3 Combinatorial Cubical Multivalued Maps

The class CubicalMap is used to represent a combinatorial cubical multivalued
map. The domain of this map is a set of full cubes. The image of each cube
is also a set of full cubes. If Q is an object of class Cube and F is an object
of class CubicalMap, then F [Q] is a set of cubes of type SetOfCubes which
corresponds to the image of Q. One can use the method add of a set of cubes to
add cubes to the image of Q. Alternatively, one can use the assignment operator
= to define the images of consecutive cubes.

The homomorphism induced in homology by a combinatorial cubical multi-
valued map is computed with the function Homology, whose use is illustrated
in Program 5. Note that also this function is capable of extracting homology
generators to additional data structures, like in Program 4, but we skip this
feature here for the simplicity of presentation.

6

Program 5 Computation of the homomorphism induced in homology.
01 #include <iostream>

02 #include "chomp/homology/homology.h"

03

04 using namespace chomp::homology;

05

06 int main ()

07 {
08 coordinate c1 [] = {1, 1, 0}, c2 [] = {1, 1, 1};
09 CubicalMap F;

10 SetOfCubes S;

11 S. add (Cube (c1, 3));

12 S. add (Cube (c2, 3));

13 Cube Q (c1, 3);

14 F [Q] = S;

15

16 SetOfCubes X = F. getdomain (), A, Y = S, B;

17 Chain ∗homX = 0, ∗homY = 0;

18 ChainMap ∗homF = 0;

19 int maxX = 0, maxY = 0;

20 Homology (F, X, A, Y, B, homX, maxX, homY, maxY, homF);

21

22 delete homF;

23 delete [] homX;

24 delete [] homY;

25 return 0;

26 }

7

